
Chapter 8

Correlator I. Basics

D. Anish Roshi

8.1 Introduction
A radio interferometer measures the mutual coherence function of the electric field due
to a given source brightness distribution in the sky. The antennas of the interferometer
convert the electric field into voltages. The mutual coherence function is measured by
cross correlating the voltages from each pair of antennas. The measured cross correlation
function is also called Visibility. In general it is required to measure the visibility for
different frequencies (spectral visibility) to get spectral information for the astronomical
source. The electronic device used to measure the spectral visibility is called a spectral
correlator. These devices are implemented using digital techniques. Digital techniques
are far superior to analog techniques as far as stability and repeatability is concerned.

The first of these two chapters on correlators covers some aspects of digital signal
processing used in digital correlators. Details of the hardware implementation of the
GMRT spectral correlator are presented in the next lecture.

8.2 Digitization
The signals1 at the output of the antenna/receiver system are analog voltages. Measure-
ments using digital techniques require these voltages to be sampled and quantized.

8.2.1 Sampling
A band limited signal s(t) with bandwidth ∆ν can be uniquely represented by a time series
obtained by periodically sampling s(t) at a frequency fs (the sampling frequency) which is
greater than a critical frequency 2∆ν (Shannon 1949). The signal is said to be ‘Nyquist
sampled’ if the sampling frequency is exactly equal to the critical frequency 2∆ν.

The spectrum of signals sampled at a frequency < 2 ∆ν (i.e. under sampled) is dis-
torted. Therefore the time series thus obtained is not a true representation of the band
limited signal. The spectral distortion caused by under sampling is called aliasing.

1For all the analysis presented here we assume that radio astronomy signals are stationary and ergodic
stochastic processes with a gaussian probability distribution. We also assume that the signals have zero mean.

1



2 CHAPTER 8. CORRELATOR I. BASICS

8.2.2 Quantization
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Figure 8.1: Transfer function of a two bit four level quantizer. The binary numbers
corresponding to the quantized voltage range from 00 to 11. Quantization of a sine wave
with such a quantizer is also shown.

The amplitude of the sampled signal is a continuous value. Digital systems represent
values using a finite number of bits. Hence the amplitude has to be approximated and
expressed with these finite number of bits. This processes is called quantization. The
quantized values are integer multiple of a quantity q called the quantization step. An
example of two bit (or equivalently four level) quantization is shown in Fig. 8.1. For the
quantizer q = Vmax/2

2, where Vmax is the maximum voltage (peak-to-peak) that can be
expressed within an error of ±q/2.

Quantization distorts the sampled signal affecting both the amplitude and spectrum
of the signal. This is evident from Fig. 8.1 for the case of a two bit four level quantized
sine wave. The amplitude distortion can be expressed in terms of an error function
e(t) = s(t)−sq(t), which is also called the quantization noise. Here sq(t) is the output of the
quantizer. The variance of quantization noise under certain restricted conditions (such
as uniform quantization) is q2/12. The spectrum of quantization noise extends beyond the
bandwidth ∆ν of s(t) (see Fig. 8.2). Sampling at the Nyquist rate (2∆ν) therefore aliases
the power of the quantization noise outside ∆ν back into the spectral band of s(t). For
radio astronomy signals, the spectral density of the quantization noise within ∆ν can
be considered uniform and is ∼ q2/12∆ν (assuming uniform quantization). Reduction in
quantization noise is hence possible by oversampling s(t) (i.e. fs > 2∆ν) since it reduces
the aliased power. For example, the signal to noise ratio of a digital measurement of the
correlation function of s(t) (see Section 8.5) using a Nyquist sampling and a two bit four
level quantizer is 88% of the signal to noise ratio obtained by doing analog correlation for
Nyquist sampling and 94% if one were to sample at twice the Nyquist rate.

The largest value that can be expressed by a quantizer is determined by the number
of bits (M ) used for quantization. This value is 2M − 1 for binary representation. The
finite number of bits puts an upper bound on the amplitude of input voltage that can
be expressed within an error ±q/2. Signals with amplitude above the maximum value
will be ‘clipped’, thus producing further distortion. This distortion is minimum if the
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Figure 8.2: Power spectrum of band limited gaussian noise after one bit quantization.
The spectrum of the original analog signal is shown with a solid line, while that of the
quantized signal is shown with a dotted line.

probability of amplitude of the signal exceeding +Vmax/2 and −Vmax/2 is less than 10−5.
For a signal with a gaussian amplitude distribution this means that Vmax = 4.42σ, σ being
the standard deviation of s(t).

8.2.3 Dynamic Range
As described above, the quantizer degrades the signal if its (peak-to-peak) amplitude
is above an upper bound Vmax. The minimum change in signal amplitude that can be
expressed is limited by the quantization step q. Thus a given quantizer operates over a
limited range of input voltage amplitude called its dynamic range. The Dynamic range of
a quantizer is usually defined by the ratio of the power of a sinusoidal signal with peak-
to-peak amplitude = Vmax to the variance of the quantization noise. For an ideal quantizer
with uniform quantization the dynamic range is 3

222M . Thus the dynamic range is larger
if the number of bits used for quantization is larger.

8.3 Discrete Fourier Transform
The Fourier Transform (FT) of a signal s(t) is defined as

S(w) =

∫ +∞

−∞
s(t)e−jωtdt (8.3.1)
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Discrete Fourier Transform (DFT) is an operation to evaluate the FT of the sampled signal
s(n) (≡ s(n 1

fs
)) with a finite number of samples (say N ). It is defined as

S(k) =
N−1∑

n=0

s(n)e−j2πnk/N ; 0 ≤ k ≤ N − 1 (8.3.2)

The relationship between FT and DFT and some properties of DFT are discussed here.
Consider a time series s(n), which is obtained by sampling a continuous band limited

signal s(t) at a rate fs (see Fig. 8.3). The sampling function is a train of delta function
III(t). The length of the series is restricted to N samples by multiplying with a rectangular
window function Π(t). The modification of the signal s(t) due to these operations and the
corresponding changes in the spectrum are shown in Fig. 8.3. The spectral modifications
can be understood from the properties of Fourier transforms. The FT of the time series
can now be written as a summation (assuming N is even)

S(ω) =

∫ +∞

−∞
s(t)

N/2−1∑

n=−N/2
δ(t− n

fs
)e−jωtdt

=

N/2−1∑

n=−N/2
s(
n

fs
)e−

jωn
fs (8.3.3)

What remains is to quantize the frequency variable. For this the frequency domain is
sampled such that there is no aliasing in the time domain (see Fig. 8.3). This is satisfied
if ∆ω = 2πfs/N . Thus Eq. 8.3.3 can be written as

S(k∆ω) =

N/2−1∑

n=−N/2
s(
n

fs
)e−

jk∆ωn
fs (8.3.4)

Using the relation ∆ω/fs = 2π/N and writing the variables as discrete indices we get the
DFT equation. The cyclic nature of DFT (see below) allows n and k to range from 0 to N−1
instead of −N/2 to N/2− 1.

Some properties that require attention are:
1. The spectral values computed for N/2 ≥ k ≥ 3N/2 − 1 are identical to those for

k = −N/2 to N/2 − 1. In fact the computed values have a periodicity equal to N∆ω
which makes the DFT cyclic in nature. This periodicity is a consequence of the
sampling done in the time and frequency domain (see Fig. 8.3).

2. The sampling interval of the frequency variable ∆ω (= 2πfs/N ) is inversely propor-
tional to the total number of samples used in the DFT. This is discussed further in
Section 8.3.1.

There are several algorithms developed to reduce the number of operations in the DFT
computation, which are called Fast Fourier Transform (FFT) algorithms. These algorithms
reduce the time required for the computation of the DFT from O(N 2) to O(N log(N)). The
FFT implementation used in the GMRT correlator uses Radix 4 and Radix 2 algorithms.

In the digital implementation of FFTs the quantization of the coefficients e−j2πnk/N de-
grades the signal to noise ratio the of spectrum. This degradation is in addition to the
quantization noise introduced by the quantizer. Thus the dynamic range reduces further
due to coefficient quantization. Coefficient quantization can also produce systematics
in the computed spectrum. This effect also depends on the statistics of the input sig-
nal, and in general can be reduced only by using a larger number of bits for coefficient
representation.



8.4. DIGITAL DELAY 5

8.3.1 Filtering and Windowing
The Fourier transform of a signal s(t) is a decomposition into frequency or spectral com-
ponents. The DFT also performs a spectral decomposition but with a finite spectral res-
olution. The spectrum of a signal s(t) obtained using a DFT operation is the convolution
of the true spectrum of the signal S(f) convolved by the FT W (f) of the window function,
and sampled at discrete frequencies. Thus a DFT is equivalent to a filter bank with filters
spaced at ∆ω in frequency. The response of each filter is the Fourier transform of the
window function used to restrict the number of samples to N . For example, in the above
analysis (see Section 8.3) the response of each ‘filter’ is the sinc function, (which is the FT
of the rectangular window Π(t)). The spectral resolution (defined as the full width at half
maximum (FWHM) of the filter response) of the sinc function is 1.21∆ω

2π . Different window
functions w(n) give different ‘filter’ responses, i.e. for

S(k) =

N−1∑

n=0

w(n)s(n)e−j2πnk/N (8.3.5)

the Hanning window

w(n) = 0.5(1 + cos(2πn/N)) for −N/2 ≤ n ≤ N/2− 1 (8.3.6)
= 0 elsewhere

has a spectral resolution 2∆ω
2π . Side lobe reduction and resolution are the two princi-

pal considerations in choosing a given window function (or equivalently a given filter
response). The rectangular window (i.e. sinc response function) has high resolution but a
peak sidelobe of 22% while the Hanning window has poorer resolution but peak sidelobe
level of only 2.6%.

8.4 Digital Delay
In interferometry the geometric delay suffered by a signal (see Chapter 4) has to be com-
pensated before correlation is done. In an analog system this can be achieved by adding
or removing cables from the signal path. An equivalent method in digital processing is
to take sampled data that are offset in time. Mathematically, s(n −m) is the sample de-
layed by m × 1/fs with respect to s(n) (where fs is the sampling frequency). In such an
implementation of delay it is obvious that the delay can be corrected only to the nearest
integral multiple of 1/fs.

A delay less than 1/fs (called fractional delay) can also be achieved digitally. A delay
τ introduced in the path of a narrow band signal with angular frequency ω produces a
phase φ = ωτ . Thus, for a broad band signal, the delay introduces a phase gradient
across the spectrum. The slope of the phase gradient is equal to the delay or τ = dφ

dω . This
means that introducing a phase gradient in the FT of s(t) is equivalent to introducing a
delay is s(t). Small enough phase gradients can be applied to realize a delay < 1/fs. In
the GMRT correlator, residual delays τ < 1/fs is compensated using this method. This
correction is called the Fractional Sampling Time Correction or FSTC.

8.5 Discrete Correlation and the Power Spectral Density
The cross correlation of two signals s1(t) and s2(t) is given by

Rc(τ) = < s1(t)s2(t+ τ) > (8.5.7)
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where τ is the time delay between the the two signals. In the above equation the angle
bracket indicates averaging in time. For measuring Rc(τ) in practice an estimator is
defined as

R(m) =
1

N

N−1∑

n=0

s1(n)s2(n+m) 0 ≤ m ≤M (8.5.8)

where m denotes the number of samples by which s2(n) is delayed, M is the maximum
delay (M � N ). By definition R(m) is a random variable. The expectation value of R(m)
converges to Rc(τ = m

fs
) when N → ∞. The autocorrelation of the time series s1(n) is also

obtained using a similar equation as Eq. 8.5.8 by replacing s2(n+m) by s1(n+m).
The correlation function estimated from the quantized samples in general deviates

from the measurements taken with infinite amplitude precision. The deviation depends
on the true correlation value of the signals. The relationship between the two measure-
ment can be expressed as

R̂c(m/fs) = F(R̂(m)) (8.5.9)
where R̂c(m/fs) and R̂(m) are the normalized correlation functions (normalized with zero
lag correlation in the case of autocorrelation and with square root of zero lag autocorre-
lations of the signal s1(t) and s2(t) in the case of cross correlation) and F is a correction
function. It can be shown that the correction function is monotonic (Van Vleck & Middel-
ton 1966, Cooper 1970, Hagan & Farley 1973, Kogan 1998). For example, the functional
dependence for a one-bit quantization (the ‘Van Vleck Correction’) is

R̂c(m/fs) = sin(
π

2
R̂(m)) (8.5.10)

Note that the correction function is non-linear and hence this correction should be
applied before any further operation on the correlation function. If the number of bits
used for quantization is large then over a large range of correlation values the correction
function is approximately linear.

The power spectral density (PSD) of a stationary stochastic process is defined to be the
FT of its auto-correlation function (the Wiener-Khinchin theorem). That is if Rc(τ) = <
s(t)s(t− τ) > then the PSD, Sc(f) is

Sc(f) =

∫ ∞

−∞
Rc(τ)e

−j2πfτdτ (8.5.11)

From the properties of Fourier transforms we have

Rc(0) = < s(t)s(t) > =

∫ ∞

−∞
Sc(f)df (8.5.12)

i.e. the function Sc(f) is a decomposition of the variance (i.e. ‘power’) of s(t) into
different frequency components.

For sampled signals, the PSD is estimated by the Fourier transform of the discrete
auto-correlation function. In case the signal is also quantized before the correlation, then
one has to apply a Van Vleck correction prior to taking the DFT. Exactly as before, this
estimate of the PSD is related to the true PSD via convolution with the window function.

One could also imagine trying to determine the PSD of a function s(t) in the following
way. Take the DFTs of the sampled signal s(n) for several periods of length N and average
them together and use this as an estimate of the PSD. It can be shown that this process
is exactly equivalent to taking the DFT of the discrete auto-correlation function.

The cross power spectrum of the two signals is defined as the FT of the cross cor-
relation function and the estimator is defined in a similar manner to that of the auto-
correlation case.
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Figure 8.3: The relation between the continuous Fourier transform and the discrete
Fourier transform. The panels on the left show the time domain signal and those on
the right show the corresponding spectra.


