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6.1 Introduction
A single element telescope with a steerable paraboloidal reflecting surface is the sim-
plest kind of radio telescope that is commonly used. Such a telescope gives an angular
resolution ∼ λ/D, where D is the diameter of the aperture and λ is the wavelength of
observation. For example, for a radio telescope of 100 m diameter (which is about the
largest that is practically feasible for a mechanically steerable telescope), operating at a
wavelength of 1 m, the resolution is ∼ 30 arc min. This is a rather coarse resolution and
is much less than the resolution of ground based optical telescopes.

Use of antenna arrays is one way of increasing the effective resolution and collecting
area of a radio telescope. An array usually consists of several discrete antenna elements
arranged in a particular configuration. Most often this configuration produces an un-
filled aperture antenna, where only part of the overall aperture is filled by the antenna
structure. The array elements can range in complexity from simple, fixed dipoles to fully
steerable, parabolic reflector antennas. The outputs (voltage signals) from the array el-
ements can be combined in various ways to achieve different results. For example, the
outputs may be combined, with appropriate phase shifts, to obtain a single, total power
signal from the array – such an array is generally referred to as a phased array. If the
outputs are multiplied in distinct pairs in a correlator and processed further to make an
image of the sky brightness distribution, the array is generally referred to as a correlator
array (or an interferometer). Here we will primarily be concerned with the study of phased
arrays, with direct comparison of the performance with correlator arrays, where relevant.

6.2 Array Theory
6.2.1 The 2 Element Array
We begin by deriving the far field radiation pattern for the case of the simplest array, two
isotropic point source elements separated by a distance d, as shown in Figure 6.1. The
net far field in the direction θ is given as

E(θ) = E1 e
jψ/2 + E2 e

−jψ/2 , (6.2.1)
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Figure 6.1: Geometry for the 2 element array.

where ψ = k d sin θ+ δ , k = 2π/λ is the wavenumber and δ is the intrinsic phase difference
between the two sources. E1 and E2 are the amplitudes of the electric field due to the
two sources, at the distant point under consideration. The reference point for the phase,
referred to as the phase centre, is taken halfway between the two elements. If the two
sources have equal strength, E1 = E2 = E0 and we get

E(θ) = 2E0 cos(ψ/2) (6.2.2)

The power pattern is obtained by squaring the field pattern. By virtue of the reciprocity
theorem1, E(θ) also represents the voltage reception pattern obtained when the signals
from the two antenna elements are added, after introducing the phase shift δ between
them.

For the case of δ = 0 and d � λ, the field pattern of this array shows sinusoidal
oscillations for small variations of θ around zero, with a period of 2λ/d. Non-zero values
of δ simply shift the phase of these oscillations by the appropriate value.

If the individual elements are not isotropic but have identical directional patterns, the
result of eqn 6.2.2 is modified by replacing E0 with the element pattern, Ei(θ). The fi-
nal pattern is given by the product of this element pattern with the cos(ψ/2) term which
represents the array pattern. This brings us to the important principle of pattern mul-
tiplication which can be stated as : The total field pattern of an array of nonisotropic
but similar elements is the product of the individual element pattern and the pattern of
an array of isotropic point sources each located at the phase centre of the individual ele-
ments and having the same relative amplitude and phase, while the total phase pattern is
the sum of the phase patterns of the individual elements and the array of isotropic point
sources. This principle is used extensively in deriving the field pattern for complicated
array configurations, as well as for designing array configurations to meet specified field
pattern requirements (see the book on “Antennas” by J.D. Kraus (1988) for more details).

6.2.2 Linear Arrays of n Elements of Equal Amplitude and Spacing :
We now consider the case of a uniform linear array of n elements of equal amplitude, as
shown in Figure 6.2. Taking the first element as the phase reference, the far field pattern
is given by

E(θ) = E0

[
1 + ejψ + ej2ψ + . . . + ej(n−1)ψ

]
, (6.2.3)

1see Chapter 3
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where ψ = k d sin θ + δ , k = 2π/λ is the wavenumber and δ is the progressive phase
difference between the sources. The sum of this geometric series is easily found to be

E(θ) = E0
sin(nψ/2)

sin(ψ/2)
ej(n−1)ψ/2. (6.2.4)

If the centre of the array is chosen as the phase reference point, then the above result
does not contain the phase term of (n− 1)ψ/2. For nonisotropic but similar elements, E0

is replaced by the element pattern, Ei(θ), to obtain the total field pattern.
The field pattern in eqn 6.2.4 has a maximum value of nE0 when ψ = 0, 2π, 4π, . . . . The

maxima at ψ = 0 is called the main lobe, while the other maxima are called grating lobes.
For d < λ, only the main lobe maxima maps to the physically allowed range of 0 ≤ θ ≤ 2π.
By suitable choice of the value of δ, this maxima can be “steered” to different values of θ,
using the relation k d sin θ = −δ. For example, when all the elements of the array are in
phase (δ = 0), the maximum occurs at θ = 0. This is referred to as a “broadside” array.
For a maximum along the axis of the array (θ = 90o), δ = −k d is required, giving rise to an
“end-fire” array. The broadside array produces a disc or fan shaped beam that covers a
full 360o in the plane normal to the axis of the array. The end-fire array produces a cigar
shaped beam which has the same shape in all planes containing the axis of the array.
For nonisotropic elements, the element pattern also needs to be steered (electrically or
mechanically) to match the direction of its peak response with that of the peak of the
array pattern, in order to achieve the maximum peak of the total pattern.

For the case of d > λ, the grating lobes are uniformly spaced in sin θ with an inter-
val between adjacent lobe maxima of λ/d, which translates to ≥ λ/d on the θ axis (see
Figure 6.3).

The uniform, linear array has nulls in the radiation pattern which are given by the
condition ψ = ±2πl/n, l = 1, 2, 3, . . . which yields

θ = sin−1

[
1

kd

(
±2πl

n
− δ

)]
. (6.2.5)

For a broadside array (δ = 0), these null angles are given by

θ = sin−1

(
± 2πl

nkd

)
. (6.2.6)

Further, if the array is long (nd� lλ), we get

θ ' ± λl

nd
' ± l

Lλ
, (6.2.7)

. . . . .
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Figure 6.2: Geometry for the n element array
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Figure 6.3: Grating lobes for an array of n identical elements. The solid line is the array
pattern. The broad, dashed line curve is an example of the element pattern. The resultant
of these two is shown as the dotted pattern.

where Lλ is the length of the array in wavelengths and Lλ = (n−1)d/λ ' nd/λ for large n.
The first nulls occur at l = ±1, and the beam width between first nulls (BWFN) for such
an array is given by

BWFN =
2

Lλ
rad =

114.6

Lλ
deg . (6.2.8)

The half-power beam width (HPBW) is then given by

HPBW ' BWFN

2
=

57.3

Lλ
deg . (6.2.9)

Similarly, it can be shown that the HPBW of an end-fire array is
√

2/Lλ (see “Antennas”
by J.D. Kraus (1988) for more details).

Such linear arrays are useful for studying sources of size < λ/d radians, as only one
lobe of the pattern can respond to the source at a given time. Also, the source should be
strong enough so that confusion due to other sources in the grating lobes is not signif-
icant. Linear grating arrays are particularly useful for studying strong isolated sources
such as the Sun.

The presence of grating lobes (with amplitude equal to the main lobe) in the response
of an array is usually an unwanted feature, and it is desirable to reduce their levels as
much as possible. For non-isotropic elements, the taper in the element pattern provides
a natural reduction of the amplitude of the higher grating lobes. This is illustrated in
Figure 6.3. To get complete cancellation of all the grating lobes starting with the first
one, requires an element pattern that has periodic nulls spaced λ/d apart, with the first
null falling at the location of the first grating lobe. This requires the elements to have
an aperture of ∼ d, which makes the array equivalent to a continuous or filled aperture
telescope. This can be seen mathematically by replacing E0 in eqn 6.2.4 by the element
pattern of an antenna of aperture size d and showing that it reduces to the expression for
the field pattern of a continuous aperture of size nd.

The theoretical treatment given above is easily extended to two dimensional antenna
arrays.

6.2.3 The Fourier Transform Approach to Array Patterns
So far we have obtained the field pattern of an array by directly adding the electric field
contributions from different elements. Now, it is well established that for a given aper-
ture, if the electric field distribution across the aperture is known, then the radiation
pattern can be obtained from a Fourier Transform of this distribution (see, for example,
Christiansen & Hogbom 1985). This principle can also be used for computing the field
pattern of an array. Consider the case of the array pattern for the 2-element array dis-
cussed earlier, as an example. The electric field distribution across the aperture can be
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taken to be zero at all points except at the location of the two elements, where it is a delta
function for isotropic point sources. The Fourier Transform of this gives the sinusoidal
oscillations in sin θ, which have also been inferred from eqn 6.2.2.

Using the Fourier Transform makes it easy to understand the principle of pattern mul-
tiplication described above. When the isotropic array elements are replaced with direc-
tional elements, it corresponds to convolving their delta function electric field distribution
with the electric field distribution across the finite apertures of these directional elements.
Since convolution of two functions maps to multiplication of their Fourier Transforms in
the transform domain, the total field pattern of the array is naturally the product of the
field pattern of the array with isotropic elements with the field pattern of a single element.
The computational advantages of the Fourier Transform makes this approach the natural
way to obtain the array pattern of two dimensional array telescopes having a complicated
distribution of elements.

6.3 Techniques for Phasing an Array
The basic requirement for phasing an array is to combine the signals from the elements
with proper delay and phase adjustments so that the beam can be pointed or steered in
the chosen direction. Some of the earliest methods employed techniques for mechanically
switching in different lengths of cables between each element and the summing point, to
introduce the delays required to phase the array for different directions. The job became
somewhat less cumbersome with the use of electronic switches, such as PIN diodes.
However, the complexity of the cabling and switching network increases enormously with
the increase in number of elements and the number of directions for which phasing is
required.

Another method of phasing involves the use of phase shifters at each element of the
array. For example, this can be achieved by using ferrite devices or by switching in incre-
mental lengths of cable (or microstrip delay lines), using electronic switches. The phase
increments are usually implemented in binary steps (for example λ/2, λ/4, λ/8, . . . ). In
this scheme, the value of the smallest incremental phase difference controls the accuracy
of the phasing that can be achieved.

In most modern radio telescopes, digital electronic techniques are used for processing
the signals. The output from an antenna is usually down-converted to a baseband fre-
quency in a heterodyne receiver after which it is Nyquist sampled for further processing.
Techniques for introducing delays and phase changes in the signal in the digital domain,
using computers or special purpose hardware, are fairly easy to implement and flexible.

The description of phasing techniques given above applies when the delay compen-
sation of the signals from the different elements of the array is carried out at the radio
frequency of observation. When this delay compensation is carried out at the intermedi-
ate or baseband frequency of the heterodyne receiver, the signals pick up an extra phase
term of 2π νLO τg, where νLO is the local oscillator frequency used for the down conversion
and τg is the delay (with respect to the phase centre of the array) suffered for the element
(see for example Thompson, Moran & Swenson, 1986). To obtain the optimum phased
array signal, these phase terms have to be compensated before the signals from array el-
ements with different values of τg are added. Furthermore, τg for an array element varies
with time for observations of a given source and this also needs to be compensated.

For an array with similar elements, the amplitude of the signals from the elements is
usually kept constant at a common value, while the phase is varied to phase the array.
However, in the most general case, the amplitude of the signals from different elements
can be adjusted to enhance some features of the array response. This is most often used
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to reduce the sidelobe levels of the telescope or shift the nulls of the array pattern to
desired locations, such as directions from which unwanted interference signals may be
coming. Arrays where such adjustments are easily and dynamically possible are called
adaptive beam-forming arrays, and are discussed further in Chapter 7.

6.4 Coherently vs Incoherently Phased Array
Normally, the signals from an n-element phased array are combined by adding the volt-
age signals from the different antennas after proper delay and phase compensation. This
summed voltage signal is then put through a square-law detector and an output pro-
portional to the power in the summed signal is obtained. For identical elements, this
phased array gives a sensitivity which is n times the sensitivity of a single element, for
point source observations. The beam of such a phased array is much narrower than that
of the individual elements, as it is the process of adding the voltage signals with different
phases from the different elements that produces the narrow beam of the array pattern.
For some special applications, it is useful to first put the voltage signal from each element
of the array through a square-law detector and then add the powers from the elements
to get the final output of the array. This corresponds to an incoherent addition of the
signals from the array elements, whereas the first method gives a coherent addition. In
the incoherent phased array operation, the beam of the resultant telescope has the same
shape as that of a single element, since the phases of the voltages from individual el-
ements are lost in the detection process. This beam width is usually much more than
the beam width of the coherent phased array telescope. The sensitivity to a point source
is higher for the coherent phased array telescope as compared to the incoherent phased
array telescope, by a factor of

√
n.

The incoherent phased array mode of operation is useful for two kinds of astronomical
obervations. The first is when the source is extended in size and covers a large fraction of
the beam of the element pattern. In this case, the incoherent phased array observation
gives a better sensitivity. The second case is when a large region of the sky has to be
covered in a survey mode (for example, in a survey of the sky in search for new pulsars).
Here, the time taken to cover the same area of sky to equal senstivity level is less for
the incoherent phased array mode. Only for a filled aperture phased array telescope are
these times the same. For a sparsely filled physical aperture such as an earth rotation
aperture synthesis telescope, this distinction between the coherent and incoheret phased
array modes is an important aspect of phased array operation.

6.5 Comparison of Phased Array with a Multi-Element In-
terferometer

As has been mentioned in Section 1, the basic distinction between a phased array and a
multi-element interferometer is that in a phased array the signals from all the elements
are added in phase before (or after) being put through a square-law detector, where as
in a multi-element interferometer, the signals from the elements are correlated in pairs
for each possible combination of two elements and these outputs are further processed
to make a map of the brightness distribution. Thus, if the signal from element i is given
by Vi, the output of the (coherent) phased array can be written as

VPA =

〈(
n∑

i=1

Vi

)2〉
(6.5.10)
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whereas the interferometer output is given by

Vij = 〈Vi Vj〉 i, j = 1, 2, . . . , n ; i 6= j (6.5.11)

Expansion of the right hand side of eqn 6.5.10 produces terms of the kind < Vi Vj >
and V 2

i . The first kind are all available from the correlator outputs and, if the correlator
also records the self products of all the elements, the second kind are also provided
by the correlator. Thus, by appropriate combinations of the outputs of the correlator
used in the multi-element interferometer, the phased array output can be synthesised.
Even the steering of the beam of the phased array can be achieved by combining the
visibilities from the correlator after multiplying with appropriate phase factors. Also, the
incoherently phased array output can be synthesised by combining only the self product
outputs from the correlator.

However, the network of multipliers required to implement the correlator is a much
more complicated hardware than the adder and square law detector needed for the
phased array. Further, the net data rate out of the correlator is much higher than that
from the phased array output, for data with the same time resolution. Thus, the interfer-
ometer achieves the phased array response in a very expensive manner. This is especially
true for very compact, point-like sources where observations with an interferometer do
not provide any extra information about the nature of the source. For example, observa-
tions of pulsars are best suited to a phased array, as these are virtually point sources for
the interferometer and the requirement for high time resolution that is relevant for their
studies is more easily met with a phased array output.
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