
Chapter 5

Sensitivity and Calibration for
Interferometers

Jayaram N. Chengalur

5.1 Sensitivity
As we discussed earlier, an aperture synthesis telescope can be regarded as a collection of
two element interferometers. Hence, for understanding the sensitivity of such a telescope,
it is easier to first start with the case of a two element interferometer. Consider such an
interferometer composed of two antennas i, j, (of identical gains, but possibly different
system temperatures), looking at a point source of flux density S. We assume that the
point source is at the phase center1 and hence that in the absence of noise the visibility
phase is zero. Let the individual antenna gains2 be G and system temperatures be Tsi

and Tsj
. If ni(t) and nj(t) are the noise voltages of antennas i and j respectively,then

σ2
i =

〈
n2
i (t)
〉

= Tsi , and σ2
j =

〈
n2
j (t)
〉

= Tsj. Similarly if vi(t) and vj(t) are the voltages
induced by the incoming radiation from the point source,

〈
v2
i (t)

〉
=
〈
v2
j (t)

〉
= GS. The

instantaneous correlator3 output is given by:

rij(t) = (vi(t) + ni(t)) (vj(t) + nj(t))

The mean4 of the correlator output is hence:

〈rij(t)〉 = 〈(vi(t) + ni(t)) (vj(t) + nj(t))〉
= 〈vi(t)vj(t)〉
= GS (5.1.1)

where we have assumed that the noise voltages of the two antennas are not correlated,
and also of course that the signal voltages are not correlated with the noise voltages. rij(t)
is hence an unbiased estimator of the true visibility.

To determine the noise in the correlator output, we would need to compute the rms of
rij(t) for which we need to be able to work out:

1See Chapter 4.
2Here the gain is taken to be in units of Kelvin per Jansky of flux in the matched polarization
3Here we are dealing with an ordinary correlator, not the complex correlator introduced in the chapter on two

element interferometers.
4Note that the average being taken over here is ensemble average, and not an average over time.

1



2 CHAPTER 5. SENSITIVITY AND CALIBRATION FOR INTERFEROMETERS

〈rij(t)rij(t)〉 = 〈(vi + ni)(vj + nj)(vi + ni)(vj + nj)〉

where for ease of notation we have stopped explicitly specifying that all voltages are
functions of time. This quantity is not trivial to work out in general. However, if we
assume that all the random processes involved are Gaussian processes5 the complex-
ity is considerably reduced because for Gaussian random variables the fourth moment
can then be expressed in terms of products of the second moment. In particular6, if
x1, x2, x3, & x4 have a joint gaussian distribution then:

〈x1x2x3x4〉 = 〈x1x2〉 〈x3x4〉 + 〈x1x3〉 〈x2x4〉 +

〈x1x4〉 〈x2x3〉 (5.1.2)

Rather than directly computing 〈rij(t)rij(t)〉, it is instructive first to consider the more
general quantity

〈rij(t)rkl(t)〉 = 〈(vi + ni)(vj + nj)(vk + nk)(vl + nl)〉
viz. the cross-correlation between the outputs of interferometers (ij) and (kl). We

have:

〈rij(t)rkl(t)〉 = 〈(vi + ni)(vj + nj)〉 〈(vk + nk)(vl + nl)〉 +

〈(vi + ni)(vk + nk)〉 〈(vj + nj)(vl + nl)〉 +

〈(vi + ni)(vl + nl)〉 〈(vk + nk)(vj + nj)〉

= (〈vivj〉 +
〈
n2
i

〉
δij)(〈vkvl〉 +

〈
n2
k

〉
δkl) +

(〈vivk〉 +
〈
n2
i

〉
δik)(〈vjvl〉 +

〈
n2
j

〉
δjl) +

(〈vivl〉 +
〈
n2
i

〉
δil)(〈vkvj〉 +

〈
n2
k

〉
δkj)

= (GS)2 + GS(σ2
i δij + σ2

kδkl) + σ2
i δijσ

2
kδkl +

(GS)
2
+ GS(σ2

i δik + σ2
j δjl) + σ2

i δikσ
2
j δjl +

(GS)
2
+ GS(σ2

i δil + σ2
kδkj) + σ2

i δilσ
2
kδkj (5.1.3)

The case we are currently interested in is 〈rij(t)rij (t)〉, which from eqn(5.1.3) is:

〈rij(t)rij (t)〉 = 3(GS)
2
+ (σ2

i + σ2
j )GS + σ2

i σ
2
j

= 2(GS)2 + (GS + Tsi
)(GS + Tsj

) (5.1.4)

To get the variance of rij(t) we need to subtract the square of the mean of rij(t) from the
expression in eqn(5.1.4). Substituting for 〈rij(t)〉2 from eqn(5.1.1) we have:

σ2
ij = (GS)

2
+ (GS + Tsi

)(GS + Tsj
) (5.1.5)

Note that the angular brackets denote ensemble averaging. In real life of course one
cannot do an ensemble average. Instead one does an average over time, i.e. we work in

5Recall from the discussion of sensitivity of a single dish telescope that the central limit theorem ensures
that the signal and noise statistics will be well approximated by a Gaussian. This of course does not include
‘systematics’, like eg. interference, or correlator offsets because of bit getting stuck in the on or off mode etc.

6The derivation of this expression is particularly straightforward if one works with the moment generating
function; see also the derivation sketched in Chapter 1.



5.1. SENSITIVITY 3

terms of a time averaged correlator output r̄ij(t), defined as

r̄ij(t) =
1

T

∫ t+T/2

t−T/2

rij(t
′

)dt
′

As can easily be verified, 〈r̄ij〉 = 〈rij〉. However, computing the second moment, viz.,
σ̄2
ij = 〈r̄ij r̄ij〉 − 〈r̄ij〉2 is slightly more tricky. It can be shown7 that if x(t) is a zero mean

stationary process and that x̄(t) is the time average of x(t) over the interval (t−T/2, t+T/2),
then

σ̄2
x =

1

T

∫ T/2

−T/2

(
1 − |τ |

T

)
Rxx(τ) dτ (5.1.6)

where Rxx(τ) is the auto-correlation function of x(t), and σ̄ is the variance of x(t). Now,
if x(t) is a quasi-sinusoidal process with bandwidth ∆ν, then the integral of Rxx(τ) will
be negligible outside the coherence time 1/∆ν. Further, if T >> 1/∆ν, then the factor in
parenthesis in eqn(5.1.6) can be taken to be ∼ 1 for τ < 1/∆ν. Hence we have:

σ̄2
x ' 1

T

∫ T/2

−T/2

Rxx(τ) dτ ' 1

T

∫ ∞

−∞
Rxx(τ) dτ

=
1

T
Sxx(0) =

1

T

σ2
x

2∆ν
(5.1.7)

where Sxx(ν) = σ2
x/2∆ν is the power spectrum8 of x(t). From eqn(5.1.7) and eqn(5.1.5) we

hence have
σ̄2
ij =

1

2T∆ν

(
(GS)2 + (GS + Tsi

)(GS + Tsj
)
)

(5.1.8)

Putting all this together we get that the signal to noise ratio of a two element interferom-
eter is given by:

snr =
(
√

2T∆νGS)√
(GS)2 + (GS + Tsi

)(GS + Tsj
)

(5.1.9)

There are two special cases which often arise in practice. The first is when the source is
weak, i.e. GS � Ts. In this case the snr becomes

snr =
(
√

2T∆νGS)√
Tsi

Tsj

(5.1.10)

For a single dish with the collecting area equal to the sum of the collecting areas of
antennas i and j (i.e. with gain 2G), and with system temperature Ts =

√
TsiTsj the

signal to noise would have been a factor of
√

2 better9. The loss of signal to noise in
the two element interferometer is because one does not measure the auto-correlations of
antennas i and j. Only their cross-correlation has been measured. In a sigle dish one
would have effectively measured the cross-correlation as well as the auto-correlations.

7Papoulis, ‘Probability, Random Variables & Stochastic Processes’, Third Edition, Chapter 10
8Where we have made the additional assumption that x(t) is a white noise process, i.e. that its spectrum is

flat. The power spectrum for such processes is easily derived from noting that
R

∞

−∞
Sxx(ν)dν = σ2

x, and that for
a quasi-sinosoidal proccess of bandwidth ∆ν, the integrand is non zero only over an interval 2∆ν (including the
negative frequencies).

9As you can easily derive from eqns 5.1.1 and 5.1.3 by putting i = j = k = l. Note that in this case eqn 5.1.1
becomes 〈rii(t)〉 = (vi(t) + ni(t)) (vi(t) + ni(t)) = 2GS + Ts
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The other special case of interest is when the source is extremely bright, i.e. GS � Ts.
In this case, the signal to noise ratio is:

snr =
(
√

2T∆νGS)√
2(GS)2

=
√

T∆ν (5.1.11)

This is as expected, because for very bright sources, one is limited by the Poisson fluc-
tuations of the source brightness, and hence one would expect the signal to noise ratio
to go as the square root of the number of independent measurements. Since one gets
an independent measurement every 1/∆ν seconds, the total number of independent mea-
surements in a time T is just T∆ν.

Having derived the signal to noise ratio for a two element interferometer, let us now
consider the case of an N element interferometer. This can be considered as NC2 two
element interferometers. Let us take the case where the source is weak. Then from
eqn(5.1.3) the correlation between r12(t) and r13(t) is given by

〈r12(t)r13(t)〉 = σ2
1δ12σ

2
1δ13 + σ2

1δ13σ
2
1δ21 + σ2

1δ11σ
2
2δ23

= 0 (5.1.12)

The outputs are uncorrelated, even though these two interferometers have one antenna
in common10. Similarly, one can show that (as expected) the outputs of two two-element
interferometers with no antenna in common are uncorrelated. Since the rij ’s are all
uncorrelated with one another, the rms noise can simply be added in quadrature. In
particular, for an N element array, where all the antennas are identical and have the
same system temperature, the signal to noise ratio while looking at a weak source is:

snr =
√

N(N − 1)T∆ν GS

Ts
(5.1.13)

This is the fundamental equation11 that is used to estimate the integration time required
for a given observation. The signal to noise ratio for an N element interferometer is less
than what would have been expected for a single dish telescope with area N times that
of a single element of the interferometer, but only by the factor N/

√
N(N − 1). The lower

sensitivity is again because the N auto-correlations have not been measured. For large N
however, this loss of information is negligible. For the GMRT, N = 30 and N/

√
N(N − 1) =

1.02, hence the snr is essentially the same as that of a single dish with 30 times the
collecting area of a single GMRT dish.

For a complex correlator12, the analysis that we have just done holds separately for
the cosine and sine channels of the correlator. If we call the outputs of such a correlator
rcij and rsij then it can be shown that the noise in rcij and rsij is uncorrelated. Further
since the time averaging can be regarded as the adding together of a large number of
independent samples (∼

√
T∆ν), from the central limit theorem, the statistics of the noise

in r̄cij and r̄sij are well approximated as Gaussian. It is then possible to derive the statistics
of functions of r̄cij and r̄sij , such as the visibility amplitude (

√
r̄cij + r̄sij ) and the visibility

phase (tan−1 r̄sij/r̄
c
ij ). For example, it can be shown that the visibility amplitude has a Rice

distribution13

10This may seem counter intuitive, but note that the outputs are only uncorrelated, they are not independent.
11In some references, an efficiency factor η is introduced to account for degradation of signal to noise ratio

because of the noise introduced by finite precision digital correlation etc. This factor has been ignored here, or
equivalently one can assume that it has been absorbed into the system temperature.

12See the chapter on two element interferometers
13Papoulis, ‘Probability, Random Variables & Stochastic Processes’, Third Edition, Chapter 6.
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For an extended source, the entire analysis that we have done continues to hold, with
the exception that S should be treated as the correlated part of the source flux density.
For example, at low frequencies, the Galactic background is often much larger than the
receiver noise and one would imagine that the limiting case of large source flux density
(i.e. eqn(5.1.11) is applicable. However, since this background is largely resolved out at
even modest spacings, its only effect is an increase in the system temperature.

Finally we look at the noise in the image plane, i.e. after Fourier transformation of the
visibilities. Since most of the astronomical analysis and interpretation will be based on
the image, it is the statistics in the image plane that is usually of interest. The intensity
at some point (l,m) in the image plane is given by:

I(l,m) =
1

M

∑

p

wpVpe−i2π(lup+mvp)

where wp is the weight14 given to the pth visibility measurement Vp, and there are a
total of M independent measurements. The cross-correlation function in the image plane,〈
I(l,m)I(l

′

,m
′

)
〉

is hence:

〈
I(l,m)I(l

′

,m
′

)
〉

=
1

M2

∑

p

∑

q

wpwq
〈
VpV∗

q

〉
e−i2π(lup+mvp)ei2π(l

′
uq+m

′
vq)

In the absence of any sources, the visibilities are uncorrelated with one another, and
hence, we have

〈
I(l,m)I(l

′

,m
′

)
〉

=
1

M2

∑

m

w2
pσ

2
pe

−i2π((l−l′ )up+(m−m′
)vp)

Hence in the case that all the noise on each measurement is the same, and that the
weights given to each visibility point is also the same, (i.e. uniform tapering), the cor-
relation in the map plane has exactly the same shape as the dirty beam. Further the
variance in image plane would then be σ2

V/M, where σ2
V is the noise on a single visibility

measurement. This is equivalent to eqn(5.1.13), as indeed it should be.
Because the noise in the image plane has a correlation function shaped like the dirty

beam, one can roughly take that the noise in each resolution element is uncorrelated.
The expected statistics after simple image plane operations (like smoothing) can hence
be worked out. However, after more complicated operations, like the various possible
deconvolution operations, the statistics in the image plane are not easy to derive.

5.2 Calibration
We have assumed till now that we have been working with calibrated visibilities, i.e. free
from all instrumental effects (apart from some additive noise component). In reality,
the correlator output is different from the true astronomical visibility for a variety of
reasons, to do with both instrumental effects as well as propagation effects in the earth’s
atmosphere and ionosphere.

At low frequencies, it is the effect of the ionosphere that is most dominant. As is dis-
cussed in more detail in Chapter 16, density irregularities cause phase irregularities in
the wavefront of the incoming radio waves. One would expect therefore that the image

14As discussed in Chapter 11, this weight is in general a combination of weights chosen from signal to noise
ratio considerations and from synthesized beam shaping considerations.
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of the source would be distorted in the same way that atmospheric turbulence (‘seeing’)
distorts stellar images at optical wavelengths. To first order this is true, but for the
ionosphere the ‘seeing disk’ is generally smaller than the diffraction limit of typical inter-
ferometers. There are two other effects however which are more troublesome. The first is
‘scintillation’, where because of diffractive effects the flux density of the source changes
rapidly – the flux density modulation could approach 100%. The other is that slowly vary-
ing, large scale refractive index gradients cause the apparent source position to wander.
At low frequencies, the source position could often wander by several arc minutes, i.e.
considerably more than the synthesized beam. As we shall see below, provided the time
scale of this wander is slow enough, it can be corrected for.

Let us take the case where the effect of the ionosphere is simply to produce an excess
path length, i.e. for an antenna i let the excess phase15 for a point source at sky position
(l,m) be φi(l,m, t), where we have explicitly put in a time dependence. Then the observed
visibility on a baseline (i, j) would be

Ṽij(t) = Gij(t)

∫
e−i(φi(l,m,t)−φj(l,m,t))I(l,m)e−i2π(luij+mvij ) (5.2.14)

where I(l,m) is the sky brightness distribution and we have ignored the primary beam16.
Gij(t) is ‘instrumental phase’, i.e. the phase produced by the amplifiers, transmission
lines, or other instrumentation along the signal path. If φi(l,m, t) were some general,
unknown function of (l,m, t) it would not be possible to reconstruct the true visibility
from the measured one. However, since the size scale of ionospheric disturbances is ∼
a few hundred kilometers, it is often the case that φi(l,m, t) is constant over the entire
primary beam, i.e. there is no (l,m) dependence. The source is then said to lie within a
single iso-planatic patch. In such situations, the ionospheric phase can be taken out of
the integral, and eqn(5.2.14) reduces to:

Ṽij(t) = Gij(t)e
−i(φi(t)−φj(t))

∫
I(l,m)e−i2π(luij+mvij) (5.2.15)

If it also the case that the ionospheric and instrumental gains are changing slowly, then
they can be calibrated in the following manner. Suppose that close to the source of
interest, there is a calibration source whose true visibility V cij is known. Then one could
intersperse observations of the target source with observations of the calibrator. For the
calibrator, dividing the observed visibility Ṽcij(t) by the (known) true visibility, Vcij(t) one
can measure the factor Gij(t)e−i(φi(t)−φj(t)). This can then be applied as a correction to
the visibilities of the target source. For slightly better corrections, one could interpolate
in time between calibrator observations. This is the basis of what is sometimes called
‘ordinary’ calibration. The calibrator source is usually an isolated point source, although
this is not, strictly speaking, necessary. It is sufficient to know the true visibilities V cij(t).
Note that if the calibrators absolute flux is also known, then this calibration procedure
will also calibrate the amplitude scale of the target source17.

In the approach outlined above, in order to calibrate the data one needs to solve for an
unknown complex number per baseline, (i.e. N(N-1)/2 complex numbers for an N element
interferometer). If we assume that the correlator itself does not produce any errors18, i.e.
that all the instrumental errors occur in the antennas or the transmission lines, then the

15by which we mean the phase difference over what would have been obtained in the absence of the ionosphere
16i.e. we have set the factor B(l, m)/

√
1 − l2 − m2 to 1.

17provided, as we will discuss in more detail later, that the system temperature does not differ for the target
source and the calibrator

18which is often a good assumption for digital correlators
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instrumental gain can be written out as antenna based terms, i.e.

Gij(t) = gi(t)g
∗
j (t) (5.2.16)

where gi(t) and gj(t) are the complex gains along the signal paths from antennas 1 and
2. But the ionospheric phase can also be decomposed into antenna based quantities
(see eqn 5.2.15), and can hence be lumped together with the instrumental phase. Conse-
quently the total unknown complex gains that have to be solved for reduces from N(N-1)/2
to N, which can be a dramatic reduction for large N. (For the GMRT it is a reduction from
435 unknowns to 30 unknowns).

However to appreciate the real power of this decomposition into antenna based gains,
consider the following quantities. First let us look at the sum of the phases of the raw
visibilities Ṽ12, Ṽ23 and Ṽ31. If we call the true visibility phase ψVij

, the raw visibility phase
ψeVij

and the sum of the instrumental and ionospheric phases χi, then we have

ψeV12
+ ψeV23

+ ψeV31
= χ1 − χ2 + ψV12

+ χ2 − χ3 + ψV12
+ χ3 − χ1 + ψV31

= ψV12
+ ψV23

+ ψV31
(5.2.17)

i.e. over any triangle of baselines the sum of the phases of the raw visibilities is the true
source visibility. This is called phase closure. Similarly it is easy to show that for any
baselines 1,2,3,4, the ratio of the raw visibilities will be the same as the true visibilities,
i.e.

|Ṽ12||Ṽ34|
|Ṽ23||Ṽ41|

=
|V12||V34|
|V23|V41|

(5.2.18)

This is called amplitude closure. For an N element interferometer, we have 1/2N(N − 1) −
(N − 1) constraints on the phase and 1/2N(N − 1) −N constraints on the amplitude. For
large N, this is considerably more than the N unknown gains that one is solving for. The
large number of available constraints means that the following iterative scheme would
work.

1. Choose a suitable starting model for the brightness distribution. Compute the model
visibilities.

2. For this model, solve for the antenna gains, subject to the closure constraints.

3. Apply these gain corrections to the visibility data, use the corrected data to make a
fresh model of the brightness distribution.

For arrays with sufficient number of antennas, convergence is usually rapid. Note how-
ever, for this to work, the signal to noise ratio per visibility point19 has to be reasonable,
i.e. 2-3. This is often the case at low frequencies, and this technique of determining
antenna gains (which is called self calibration) is usually highly successful.

Note that if one adds a phase χi = 2π(l0ui + m0vi) to each antenna (where l0, m0 are
arbitrary and (ui, vi) are the (u,v) co-ordinates of the ith antenna), the phase closure
constraints (eqn 5.2.17) continue to be satisfied. That means that in self calibration the
phases can be solved only upto a constant phase gradient across the uv plane, i.e. the
absolute source position is lost. Similarly, it is easy to see that the amplitude closure
constraints will be satisfied even if one multiplies all the gains by a constant number, i.e.
in self calibration one loses information on the absolute source flux density . The only
way to determine the absolute source flux density is to look at a calibrator of known flux.

19Actually strictly speaking one means the signal to noise ratio over an interval for which the ionospheric
phase can be assumed to be constant
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Since antenna gains and system temperatures are usually stable over several hours20,
it is usually sufficient to do this calibration only once during an observing run. A more
serious problem at low frequencies is that the Galactic background (whose strength varies
with location on the sky) makes a significant contribution to the system temperature.
Hence, when attempting to measure the source flux density, it is important to correct for
the fact that the system temperature is different for the calibrator source as compared
to the target source. The system temperature can typically be measured on rapid time
scales by injecting a noise source of known strength at the front end amplifier.

Another related way (to selfcal) of solving for the system gains is the following. Suppose
that the visibility on baselines (i, j) and (k, l) are identical. Then the ratio of the measured
visibilities is directly related to the ratio of the complex instrumental gains of antennas
i, j, k & l. If there are enough number of such ‘redundant’ baselines, one could imagine
solving for the instrumental gains. Some arrays, like the WSRT have equispaced anten-
nas, giving rise to a very large number of redundant baselines, and this technique has
been successfuly used to calibrate complex sources21 For a simple source, like a point
source, all possible baselines are redundant, and this technique reduces essentially to
self-calibration.

At the very lowest frequencies (ν < 200 MHz, roughly for the GMRT) the assumption
that the source lies within the iso-planatic patch probably begins to break down. The
simple self calibration scheme outlined above will stop working in that regime. A possible
solution then, is to solve (roughly speaking) for the phase changes produced by each
iso-planatic patch. Often the primary beams of several antennas will pass through the
same iso-planatic patches, so the extra number of degrees of freedom introduced will
not be substantial, and an iterative approach to solving for the unknowns will probably
converge22.

5.3 Further Reading
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omy’

20Or change in a predictable manner with changing azimuth and elevation of the antennas
21see Noordam, J. E. & de Bruyn A. G., 1982, Nature 299, 597.
22See Subrahmanya, C. R., (in ‘Radio Astronomical Seeing’, J. E. Baldwin & Wang Shouguan eds.) for more

details


