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2.1 Introduction
Radio astronomy is the study of the sky at radio wavelengths. While optical astronomy
has been a field of study from time immemorial, the “new” astronomies viz. radioas-
tronomy, X-ray, IR and UV astronomy are only about 50 years old. At many of these
wavelengths it is essential to put the telescopes outside the confines of the Earth’s at-
mosphere and so most of these “new” astronomies have become possible only with the
advent of space technology. However, since the atmosphere is transparent in the radio
band (which covers a frequency range of 10 MHz to 300 GHz or a wavelength range of
approximately 1mm to 30m) radio astronomy can be done by ground based telescopes
(see also Chapter 3).

The field of radioastronomy was started in 1923 when Karl Jansky, (working at the Bell
Labs on trying to reduce the noise in radio receivers), discovered that his antenna was
receiving radiation from outside the Earth’s atmosphere. He noticed that this radiation
appeared at the same sidereal (as opposed to solar ) time on different days and that its
source must hence lie far outside the solar system. Further observations enabled him to
identify this radio source as the centre of the Galaxy. To honour this discovery, the unit
of flux density in radioastronomy is named after Jansky where

1 Jansky = 10−26Wm−2Hz−1 (2.1.1)

Radio astronomy matured during the second world war when many scientists worked
on projects related to radar technology. One of the major discoveries of that period (made
while trying to identify the locations of jamming radar signals), was that the sun is a
strong emitter of radio waves and its emission is time variable. After the war, the scien-
tists involved in these projects returned to academic pursuits and used surplus equip-
ment from the war to rapidly develop this new field of radioastronomy. In the early
phases, radioastronomy was dominated by radio and electronic engineers and the as-
tronomy community, (dominated by optical astronomers), needed considerable persua-
sion to be convinced that these new radio astronomical discoveries were of relevance to
astronomy in general. While the situation has changed considerably since then much
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2 CHAPTER 2. INTERFEROMETRY AND APERTURE SYNTHESIS

of the jargon of radio astronomy (which is largely borrowed from electrical engineering)
remains unfamiliar to a person with a pure physics background. The coherent detection
techniques pioneered by radio astronomers also remains by and large not well under-
stood by astronomers working at other wavelength bands. This set of lecture notes aims
to familiarize students of physics (or students of astronomy at other wavelengths) with
the techniques of radio astronomy.

2.2 The Radio Sky
The sky looks dramatically different at different wave bands and this is the primary rea-
son multi-wavelength astronomy is interesting. In the optical band, the dominant emit-
ters are stars, luminous clouds of gas, and galaxies all of which are thermal sources
with temperatures in the range 103 − 104 K. At these temperatures the emitted spectrum
peaks in the optical band. Sources with temperatures outside this range and emitters of
non thermal radiation are relatively weak emitters in the optical band but can be strong
emitters in other bands. For example, cold (∼ 100 K) objects emit strongly in the infra red
and very hot objects ( > 105 K) emit strongly in X-rays. Since the universe contains all of
these objects one needs to make multiband studies in order to fully understand it.

For a thermal source with temperature greater than 100 K, the flux density in the
radio band can be well approximated by the Rayleigh-Jeans Law1, viz.

S = (2kT/λ2)dΩ (2.2.2)

The predicted flux densities at radio wavelengths are miniscule and one might hence
imagine that the radio sky should be dark and empty. However, radio observations reveal
a variety of radio sources all of which have flux densities much greater than given by
the Rayleigh-Jeans Law, i.e. the radio emission that they emit is not thermal in nature.
Today it is known that the bulk of radio emission is produced via the synchrotron mecha-
nism. Energetic electrons spiraling in magnetic fields emit synchrotron radiation. Unlike
thermal emission where the flux density increases with frequency, for synchrotron emit-
ters, the flux density increases with wavelength (see Figure 2.1). Synchrotron emitting
sources are hence best studied at low radio frequencies.

The dominant sources seen in the radio sky are the Sun, supernova remnants, radio
galaxies, pulsars etc. The Sun has a typical flux density of 105 Jy while the next strongest
sources are the radio galaxy Cygnus A and the supernova remnant Cassiopeia A, both
of which have flux densities of ∼ 104 Jy. Current technology permits the detection of
sources as weak as a few µJy. It turns out also that not all thermal sources are too weak
to detect, the thermal emission from large and relatively nearby HII regions can also be
detected easily in the radio band.

Radio emission from synchrotron and thermal emitters is “broad band”, i.e. the emis-
sion varies smoothly (often by a power law) over the whole radio band. Since the spec-
trum is relatively smooth, one can determine it by measurements of flux density at a
finite number of frequencies. This is a major advantage since radio telescopes tend to be
narrow band devices with small frequency spreads (∆ν/ν ∼ 0.1). This is partly because
it is not practical to build a single radio telescope that can cover the whole radio-band
(see eg. Chapter 3) but mainly because radio astronomers share the radio band with a
variety of other users ( eg. radar, cellular phones, pagers, TV etc.) all of who radiate at
power levels high enough to completely swamp the typical radio telescope. By interna-
tional agreement, the radio spectrum is allocated to different users. Radio astronomy has

1The Rayleigh-Jeans Law, as can be easily verified, is the limit of the Plank law when hν << kT . This
inequality is easily satisfied in the radio regime for generally encountered astrophysical temperatures.
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Figure 2.1: Intensity as a function of frequency (“power spectra”) for synchrotron (dashed)
and thermal (solid) radio sources.

a limited number of protected bands where no one else is permitted to radiate and most
radio telescopes work only at these protected frequencies.

Several atoms and molecules have spectral lines in the radio band. For example, the
hyperfine transition of the Hydrogen atom corresponds to a line with a wavelength of
∼ 21cm. Since atomic hydrogen (HI) is an extremely abundant species in the universe
this line is one of the brightest naturally occurring radio lines. The HI 21cm line has
been extensively used to study the kinematics of nearby galaxies. High quantum number
recombination lines emitted by hydrogen and carbon also fall in the radio band and can
be used to study the physical conditions in the ionized interstellar medium. Further the
radio line emission from molecules like OH, SiO, H2O etc. tend to be maser amplified
in the interstellar medium and can often be detected to very large distances. Of course,
these lines can be studied only if they fall within the protected radio bands. In fact, the
presence of radio lines is one of the justifications for asking for protection in a specific
part of the radio spectrum. While many of the important radio lines have been protected
there are many outside the protected bands that cannot be studied, which is a source of
concern. Further, with radio telescopes becoming more and more sensitive, it is possible
to study lines like the 21cm line to greater and greater distances. Since in the expanding
universe, distance translates to a redshift, this often means that these lines emitted
by distant objects move out of the protected radio band and can become unobservable
because of interference.

2.3 Signals in Radio Astronomy
A fundamental property of the radio waves emitted by cosmic sources is that they are
stochastic in nature, i.e. the electric field at Earth due to a distant cosmic source can
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be treated as a random process2. Random processes can be simply understood as a
generalization of random variables. Recall that a random variable x can be defined as
follows. For every outcome o of some given experiment (say the tossing of a die) one
assigns a given number to x. Given the probabilities of the different outcomes of the
experiment one can then compute the mean value of x, the variance of x etc. If for every
outcome of the experiment instead of a number one assigns a given function to x, then
the associated process x(t) is called a random process. For a fixed value of t, x(t) is simply
a random variable and one can compute its mean, variance etc. as before.

A commonly used statistic for random processes is the auto-correlation function. The
auto-correlation function is defined as

rxx(t, τ) =
〈
x(t)x(t + τ)

〉

where the angular brackets indicate taking the mean value. For a particularly impor-
tant class of random processes, called wide sense stationary (WSS) processes the auto-
correlation function is independent of changes of the origin of t and is a function of τ
alone, i.e.

rxx(τ) =
〈
x(t)x(t + τ)

〉

For τ = 0, r(τ) is simply the variance σ2 of x(t) (which for a WSS process is independent
of t).

The Fourier transform S(ν) of the auto-correlation function is called the power spec-
trum, i.e.

S(ν) =

∫ ∞

−∞
rxx(τ)e

−i2πτνdτ

Equivalently, S(ν) is the inverse Fourier transform of r(τ) or

rxx(τ) =

∫ ∞

−∞
S(ν)ei2πτνdν

Hence
rxx(0) = σ2 =

∫ ∞

−∞
S(ν)dν

i.e. since σ2 is the “power” in the signal, S(ν) is a function describing how that power is
distributed in frequency space, i.e. the “power spectrum”.

A process whose auto-correlation function is a delta function has a power spectrum
that is flat – such a process is called “white noise”. As mentioned in Section 2.2, many
radio astronomical signals have spectra that are relatively flat; these signals can hence be
approximated as white noise. Radio astronomical receivers however have limited band-
widths, that means that even if the signal input to the receiver is white noise, the sig-
nal after passing through the receiver has power only in a finite frequency range. Its
auto-correlation function is hence no longer a delta function, but is a sinc function (see
Section 2.5) with a width ∼ 1/∆ν, where ∆ν is the bandwidth of the receiver. The width
of the auto-correlation function is also called the “coherence time” of the signal. The
bandwidth ∆ν is typically much smaller than the central frequency ν at which the ra-
dio receiver operates. Such signals are hence also often called “quasi-monochromatic”
signals. Much like a monochromatic signal can be represented by a constant complex
phasor, quasi-monochromatic signals can be represented by complex random processes.

Given two random processes x(t) and y(t), one can define a cross-correlation function

rxy(τ) =
〈
x(t)y(t− τ)

〉

2see Chapter 1 for a more detailed discussion of topics discussed in this section.
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where one has assumed that the signals are WSS so that the cross-correlation function is
a function of τ alone. The cross-correlation function and its Fourier transform, the cross
power spectrum, are also widely used in radio astronomy.

We have so far been dealing with random processes that are a function of time alone.
The signal received from a distant cosmic source is in general a function both of the
receivers location as well as of time. Much as we defined temporal correlation functions
above, one can also define spatial correlation functions. If the signal at the observer’s
plane at any instant is E(r), then spatial correlation function is defined as:

V (x) =
〈
E(r)E∗(r + x)

〉

Note that strictly speaking the angular brackets imply ensemble averaging. In practice
one averages over time3 and assumes that the two averaging procedures are equivalent.
The function V is referred to as the “visibility function” (or just the “visibility”) and as we
shall see below, it is of fundamental interest in interferometry.

2.4 Interferometry

2.4.1 The Need for Interferometry
The idea that the resolution of optical instruments is limited due to the wave nature of
light is familiar to students of optics and is embodied in the Rayleigh’s criterion which
states that the angular resolution of a telescope/microscope is ultimately diffraction lim-
ited and is given by

θ ∼ λ/D (2.4.3)

where D is some measure of the aperture size. The need for higher angular resolution
has led to the development of instruments with larger size and which operate at smaller
wavelengths. In radioastronomy, the wavelengths are so large that even though the sizes
of radio telescopes are large, the angular resolution is still poor compared to optical in-
struments. Thus while the human eye has a diffraction limit of ∼ 20

′′ and even modest
optical telescopes have diffraction limits4 of 0.1

′′, even the largest radio telescopes (300m
in diameter) have angular resolutions of only ∼ 10

′ at 1 metre wavelength. To achieve
higher resolutions one has to either increase the diameter of the telescope further (which
is not practical) or decrease the observing wavelength. The second option has led to a
tendency for radio telescopes to operate at centimetre and millimetre wavelengths, which
leads to high angular resolutions. These telescopes are however restricted to studying
sources that are bright at cm and mm wavelengths. To achieve high angular resolutions
at metre wavelengths one need telescopes with apertures that are hundreds of kilome-
ters in size. Single telescopes of this size are clearly impossible to build. Instead radio
astronomers achieve such angular resolutions using a technique called aperture synthe-
sis. Aperture synthesis is based on interferometry, the principles of which are familiar
to most physics students. There is in fact a deep analogy between the double slit experi-
ment with quasi-monochromatic light and the radio two element interferometer. Instead
of setting up this analogy we choose the more common route to radio interferometry via
the van Cittert-Zernike theorem.

3For typical radio receiver bandwidths of a few MHz, the coherence time is of the order of micro seconds, so
in a few seconds time one gets several million independent samples to average over.

4The actual resolution achieved by these telescopes is however usually limited by atmospheric seeing.
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2.4.2 The Van Cittert Zernike Theorem
The van Cittert-Zernike theorem relates the spatial coherence function V (r1, r2) =

〈
E(r1)E

∗(r2)
〉

to the distribution of intensity of the incoming radiation, I(s). It shows that the spatial
correlation function V (r1, r2) depends only on r1 − r2 and that if all the measurements are
in a plane, then

V (r1, r2) = F{I(s)} (2.4.4)
where F implies taking the Fourier transform. Proof of the van Cittert-Zernike theorem
can be found in a number of textbooks, eg. “Optics” by Born and Wolf, “Statistical Optics”
by Goodman, “Interferometry and Synthesis in radio astronomy” by Thompson et al. We
give here only a rough proof to illustrate the basic ideas.

Let us assume that the source is distant and can be approximated as a brightness
distribution on the celestial sphere of radius R (see Figure 2.2). Let the electric field5 at a
point P ′

1(x
′
1, y

′
1, z

′
1) at the source be given by E(P ′

1). The field E(P1) at the observation point
P1(x1, y1, z1) is given by6

x1 1 y1 z 1P (    ,    ,     )

x y z1 1 1 1P (    ,    ,     )’

Figure 2.2: Geometry for the van Cittert-Zernike theorem

E(P1) =

∫
E(P ′

1)
e−ikD(P ′

1,P1)

D(P ′
1, P1)

dΩ1 (2.4.5)

5We assume here for the moment that the electric field is a scalar quantity. See Chapter 15 for the extension
to vector fields.

6Where we have invoked Huygens principle. A more rigorous proof would use scalar diffraction theory.



2.4. INTERFEROMETRY 7

where D(P ′
1, P1) is the distance between P ′

1 and P1. Similarly if E(P2) is the field at some
other observing point P2(x2, y2, z2) then the cross-correlation between these two fields is
given by

〈
E(P1)E

∗(P2)
〉

=

∫ 〈
E(P ′

1)E∗(P ′
2)
〉e−ik[D(P ′

1,P1)−D(P ′
2,P2)]

D(P ′
1, P1)D(P ′

2, P2)
dΩ1dΩ2 (2.4.6)

If we further assume that the emission from the source is spatially incoherent, i.e.
that

〈
E(P ′

1)E∗(P ′
2)
〉

= 0 except when P ′
1 = P ′

2, then we have

〈
E(P1)E

∗(P2)
〉

=

∫
I(P ′

1)
e−ik[D(P ′

1 ,P1)−D(P ′
1,P2)]

D(P ′
1, P1)D(P ′

1, P2)
dΩ1 (2.4.7)

where I(P ′
1) is the intensity at the point P ′

1. Since we have assumed that the source
can be approximated as lying on a celestial sphere of radius R we have x′1 = R cos(θx) = Rl,
y′1 = R cos(θy) = Rm, and z′1 = R cos(θz) = Rn; (l,m, n) are called “direction cosines”. It can
be easily shown7 that l2 +m2 + n2 = 1 and that dΩ = dl dm√

1−l2−m2
. We then have:

D(P ′
1, P1) =

[
(x′1 − x1)

2 + (y′1 − y1)
2 + (z′1 − z1)

2
]1/2 (2.4.8)

=
[
(Rl− x1)

2 + (Rm− y1)
2 + (Rn− z1)

2
]1/2 (2.4.9)

= R
[
(l − x1/R)2 + (m− y1/R)2 + (n− z1/R)2

]1/2 (2.4.10)

' R
[
(l2 +m2 + n2) − 2/R(lx1 +my1 + nz1)

]1/2 (2.4.11)
' R− (lx1 +my1 + nz1) (2.4.12)

(2.4.13)

Putting this back into equation 2.4.7 we get

〈
E(P1)E

∗(P2)
〉

=
1

R2

∫
I(l,m)e−ik[l(x2−x1)+m(y2−y1)+n(z2−z1)] dl dm√

1 − l2 −m2
(2.4.14)

Note that since l2 + m2 + n2 = 1, the two directions cosines (l,m) are sufficient to
uniquely specify any given point on the celestial sphere, which is why the intensity I has
been written out as a function of (l,m) only. It is customary to measure distances in the
observing plane in units of the wavelength λ, and to define “baseline co-ordinates” u, v, w
such that u = (x2 −x1)/λ, v = (y2 − y1)/λ, and w = (z2 − z1)/λ. The spatial correlation func-
tion

〈
E(P1)E

∗(P2)
〉

is also referred to as the “visibility” V(u, v, w). Apart from the constant
factor 1/R2 (which we will ignore hence forth) equation 2.4.14 can then be written as

V(u, v, w) =

∫
I(l,m)e−i2π[lu+mv+nw] dl dm√

1 − l2 −m2
(2.4.15)

This fundamental relationship between the visibility and the source intensity distribu-
tion is the basis of radio interferometry. In the optical literature this relationship is also
referred to as the van Cittert-Zernike theorum.

Equation 2.4.15 resembles a Fourier transform. There are two situations in which it
does reduce to a Fourier transform. The first is when the observations are confined to a
the U − V plane, i.e. when w = 0. In this case we have

V(u, v) =

∫ I(l,m)√
1 − l2 −m2

e−i2π[lu+mv]dl dm (2.4.16)

7see for example, Christiansen & Hogbom, “Radio telescopes”, Cambridge University Press
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i.e. the visibility V(u, v) is the Fourier transform of the modified brightness distribution
I(l,m)√
1−l2−m2

. The second situation is when the source brightness distribution is limited to
a small region of the sky. This is a good approximation for arrays of parabolic antennas
because each antenna responds only to sources which lie within its primary beam (see
Chapter 3). The primary beam is typically < 1o, which is a very small area of sky. In this
case n =

√
1 − l2 −m2 ' 1. Equation 2.4.15 then becomes

V(u, v, w) = e−i2πw
∫

I(l,m)e−i2π[lu+mv]dl dm (2.4.17)

or if we define a modified visibility Ṽ(u, v) = V(u, v, w)ei2πw we have

Ṽ(u, v) =

∫
I(l,m)e−i2π[lu+mv]dl dm (2.4.18)

2.4.3 Aperture Synthesis
As we saw in the previous section, the spatial correlation of the electric field in the U-V
plane is related to the source brightness distribution. Further, for the typical radio array
the relationship between the measured visibility and the source brightness distribution
is a simple Fourier transform. Correlation of the voltages from any two radio antennas
then allows the measurement of a single Fourier component of the source brightness dis-
tribution. Given sufficient number of measurements the source brightness distribution
can then be obtained by Fourier inversion. The derived image of the sky is usually called
a “map” in radio astronomy, and the process of producing the image from the visibilities
is called “mapping”.

The radio sky (apart from a few rare sources) does not vary8. This means that it is
not necessary to measure all the Fourier components simultaneously. Thus for example
one can imagine measuring all required Fourier components with just two antennas, (one
of which is mobile), by laboriously moving the second antenna from place to place. This
method of gradually building up all the required Fourier components and using them
to image the source is called “aperture synthesis”. If for example one has measured all
Fourier components up to a baseline length of say 25 km, then one could obtain an
image of the sky with the same resolution as that of a telescope of aperture size 25 km,
i.e. one has synthesized a 25 km aperture. In practice one can use the fact that the Earth
rotates to sample the U-V plane quite rapidly. As seen from a distant cosmic source, the
baseline vector between two antennas on the Earth is continuously changing because
of the Earth’s rotation (see Figure 2.3). Or equivalently, as the source rises and sets
the Fourier components measured by a given pair of antennas is continuously changing.
If one has an array of N antennas spread on the Earth’s surface, then at any given
instant one measures NC2 Fourier components (or in radio astronomy jargon one has
NC2 samples in the U-V plane). As the Earth rotates one samples more and more of the
U-V plane. For arrays like the GMRT with 30 antennas, if one tracks a source from rise
to set, the sampling of the U-V plane is sufficiently dense to allow extremely high fidelity
reconstructions of even complex sources. This technique of using the Earth’s rotation to
improve “U-V coverage” was traditionally called “Earth rotation aperture synthesis”, but
in modern usage is usually also simply referred to as “aperture synthesis”.

From the inverse relationship of Fourier conjugate variables it follows that short base-
lines are sensitive to large angular structures in the source and that long baselines are

8Or, in the terminology of random processes cosmic radio signals are stationary, i.e. their statistical proper-
ties like the mean, auto and cross-correlation functions etc. are independent of the absolute time.
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Figure 2.3: The track in the U-V plane traced out by an east-west baseline due to the
Earth’s rotation.

sensitive to fine scale structure. To image large, smooth sources one would hence like
an array with the antennas closely packed together, while for a source with consider-
able fine scale structure one needs antennas spread out to large distances. The array
configuration hence has a major influence on the kind of sources that can be imaged.
The GMRT array configuration consists of a combination of a central 1x1 km cluster of
densely packed antennas and three 14 km long arms along which the remaining anten-
nas are spread out. This gives a combination of both short and long spacings, and gives
considerable flexibility in the kind of sources that can be imaged. Arrays like the VLA on
the other hand have all their antennas mounted on rails, allowing even more flexibility in
determining how the U-V plane is sampled.

Other chapters in these notes discuss the practical details of aperture synthesis.
Chapter 3 discusses how one can use radio antennas and receivers to measure the
electric field from cosmic sources. For an N antenna array one needs to measure NC2

correlations simultaneously, this is done by a (usually digital) machine called the “cor-
relator”. The spatial correlation that one needs to measure (see equation 2.4.6) is the
correlation between the instantaneous fields at points P1 and P2. In an interferometer
the signals from antennas at points P1 and P2 are transported by cable to some central
location where the correlator is – this means that the correlator has also to continuously
adjust the delays of the signals from different antennas before correlating them. This
and other corrections that need to be made are discussed in Chapter 4, and exactly how
these corrections are implemented in the correlator are discussed in Chapters 8 and 9.
The astronomical calibration of the measured visibilities is discussed in Chapter 5, while
Chapter 16 deals with the various ways in which passage through the Earth’s ionosphere
corrupts the astronomical signal. Chapters 10, 12 and 14 discuss the nitty gritty of go-
ing from the calibrated visibilities to the image of the sky. Chapters 13 and 15 discuss
two refinements, viz. measuring the spectra and polarization properties of the sources
respectively.
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2.5 The Fourier Transform
The Fourier transform U(ν) of a function u(t) is defined as

U(ν) =

∫ ∞

−∞
u(t)e−i2πνtdt

and can be shown to exist for any function u(t) for which
∫ ∞

−∞
|u(t)|dt <∞

The Fourier transform is invertible, i.e. given U(ν), u(t) can be obtained using the inverse
Fourier transform, viz.

u(t) =

∫ ∞

−∞
U(ν)ei2πνtdν

Some important properties of the Fourier transform are listed below (where by con-
vention capitalized functions refer to the Fourier transform)

1. Linearity
F{au(t) + bv(t)} = aU(ν) + bV (ν)

where a, b are arbitrary complex constants.

2. Similarity
F{u(at)} =

1

a
U(

ν

a
)

where a is an arbitrary real constant.

3. Shift
F{u(t− a)} = e−i2πaU(ν)

where a is an arbitrary real constant.

4. Parseval’s Theorem ∫ ∞

−∞
|u(t)|2dt =

∫ ∞

−∞
|U(ν)|2dν

5. Convolution Theorem
F
∫ ∞

−∞
u(t)v(t− τ)dt = U(ν)V (ν)

6. Autocorrelation Theorem

F
∫ ∞

−∞
u(t)u(t+ τ)dt = |U(ν)|2

Some commonly used Fourier transform pairs are:

Table 2.1: Fourier transform pairs

Function Transform
eπt

2

eπν
2

1 δ(ν)
cos(πt) 1

2δ(ν − 1
2 ) + 1

2δ(ν + 1
2 )

sin(πt) i
2δ(ν − 1

2 ) − i
2δ(ν + 1

2 )
rect(t) sinc(ν)


