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14.1 Introduction

It has been shown in Chapter 2 that the visibility measured by the interferometer, ignoring
the phase rotation, is given by

V (u, v, w) =

∫ ∫
I(l,m)B(l,m)e−2πι(ul+vm+w(

√
1−l2−m2)) dldm√

1 − l2 −m2
, (14.1.1)

where (u, v, w) defines the co-ordinate system of antenna spacings, (l,m, n) defines the di-
rection cosines in the (u, v, w) co-ordinates system, I is the source brightness distribution
(the image) and B is the far field antenna reception pattern. For further analysis we will
assume B = 1, and drop it from all equations (for typing convenience1!)

Eq. 14.1.1 is not a Fourier transform relation. For a small field of view (l2 +m2 << 1)
the above equation however can be approximated well by a 2D Fourier transform relation.
The other case in which this is an exact 2D relation is when the antennas are arranged
in a perfect East-West line. However often array configurations are designed to maximize
the uv-coverage and the antennas are arranged in a ‘Y ’ shaped configuration. Hence, Eq.
14.1.1 needs to be used to map full primary beam of the antennas, particularly at low
frequencies. Eq. 14.1.1 reduces to a 2D relation also for non-EW arrays if the time of
observations is sufficiently small (snapshot observations).

In the first part of this chapter we will discuss the implications of approximating Eq.
14.1.1 by a 2D Fourier transform relation and techniques to recover the 2D sky bright-
ness distribution.

The field of view of a telescope is limited by the primary beams of the antennas. To
map a region of sky where the emission is at a scale larger than the angular width of the
primary beams, mosaicing needs to be done. This is discussed in the second part of this
lecture.

1The same assumptuin has been made in Chapter 2
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14.2 Mapping with Non Co-planar Arrays
14.2.1 Image Volume
Let n =

√
1 − l2 −m2 be treated as an independent variable. Then one can write a 3D

Fourier transform of V (u, v, w) with the conjugate variable for (u, v, w) being (l,m, n), as

F (l,m, n) =

∫ ∫ ∫
V (u, v, w)e2πι(ul+vm+wn)dudvdw. (14.2.2)

Substituting for V (u, v, w) from Eq. 14.1.1 we get

F (l,m, n) =
∫ ∫ {∫ ∫ ∫

I(l′,m′)√
1− l2 −m2

e−2πι(u(l′−l)+v(m′−m))e−2πι(w(
√

1−l′2−m′2−n))dudvdw

}
dl′dm′.

(14.2.3)
Using the general result

δ(l′ − l) =

∫
e−2πιu(l′−l)du, (14.2.4)

we get

F (l,m, n) =

∫ ∫
I(l′,m′)√

1 − l2 −m2
δ(l′ − l)δ(m′ −m)δ(

√
1 − l′2 −m′2 − n)dl′dm′. (14.2.5)

This equation then provides the connection between the 2D sky brightness distribution
given by I(l,m) and the result of 3D Fourier inversion of V (u, v, w) given by F (l,m, n)
referred to as the Image volume.

F (l,m, n) =
I(l,m)δ(

√
1 − l2 −m2 − n)√

1 − l2 −m2
. (14.2.6)

Hereafter, I would use I(l,m, n) to refer to the this Image volume.
In Eq.14.1.1, we have ignored the fringe rotation term 2πιw in the exponent. This is

done here only for mathematical (and typing!) convenience. The effect of including this
term would be a shift of the Image volume by one unit in the conjugate axis, namely n.
Hence, the effect of fringe stopping is to make the top most plane of I(l,m, n) tangent to
the phase center position on the celestial sphere with the rest of the sphere completely
contained inside the Image volume as shown in Fig. 14.1.

Remember that the third variable n of the Image volume is not an independent variable
and is constrained to be n =

√
1 − l2 −m2. Eq 14.2.6 then gives the physical interpretation

of I(l,m, n). Imagine the celestial sphere defined by (l,m, n) enclosed by the Image volume
I(l,m, n), with the top most plane being tangent to the celestial sphere as shown in Fig.
14.1. Eq. 14.2.6 then says that only those parts of the Image volume correspond to
the physical emission which lie on the surface of the celestial sphere. Note that since the
visibility is written as a function of all the three variables (u, v, w), the transfer function will
also be a volume. A little thought will then reveal that I(l,m, n) will be finite away from the
surface of the celestial sphere also, but that would correspond to non-physical emission
in the Image volume due to the side lobes of the telescope transfer function (referred to by
Point spread function (PSF) or Dirty beam in the literature). A 3D deconvolution using the
Dirty image- and the Dirty beam-volumes will produce a Clean image-volume. Therefore,
after deconvolution, one must perform an extra operation of projecting all points in the
image volume along the celestial sphere onto the 2D tangent plane to recover the 2D sky
brightness distribution. Fig. 14.2 is the graphical equivalent of the statements in this
paragraph.
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The Tangent Plane
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Figure 14.1: Graphical representation of the geometry of the Image volume and the celes-
tial sphere. The point at which the celestial sphere touches the first plane of the Image
volume is the point around which the 2D image inversion approximation is valid. For
wider fields, emission at points along the intersection of celestial sphere and the various
planes (labeled here as the celestial sphere) needs to be projected to the tangent plane
to recover the undistorted 2D image. This is shown for 3 points on the celestial sphere,
projected on the tangent plane, along the radial directions.
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Figure 14.2: Graphical illustration to compute the distance between the tangent plane
and a point in the sky at an angle of θ.

14.2.2 Interpretation of the w-term

The term w
√

1 − l2 −m2 is often referred to as the w-term in the literature. The origin of
this term is purely geometrical and arises due to the fact that fringe rotation effectively
phases the array for a point in the sky referred to as the phase center direction. A wave
front originating for this direction will then be received by all antennas and the signals
will be multiplied in-phase at the correlator (effectively phasing the array). The locus of
all points in 3D space, for which the array will remain phased is a sphere, referred to as
the celestial sphere. A wave front from a point away from the phase tracking center but
on the surface of such a sphere, will carry an extra phase, not due to the geometry of the
array but because of its separation from the phase center. In that sense, the phase of the
wavefront measured by a properly phased array in fact carries the information about the
source structure and the w-term is the extra phase due to the spherical geometry of the
problem. The sky can be approximated by a 2D plane close to the phase tracking center
and the w-term can be ignored, which is another way of saying that a 2D approximation
can be made for a small field of view. However sufficiently far away from the phase
center, the phase due to the curvature of the celestial sphere, the w-term, must be take
into account, and to continue to approximate the sky as a 2D plane, we will have to
rotate the visibility by the w-term. This will be equivalent to shifting the phase centre
and corresponds to a shift of the equivalent point in the image plane. Since the w-term
is a function of the image co-ordinates, this shift is different for different parts of the
image. Shifting the phase centre to any one of the points in the sky, will allow a 2D
approximation only around that direction and not for the entire image. Hence the errors
arising due to ignoring the w-term cannot be removed by a constant phase rotation of all
the visibilities. This is another way of understanding that, in the strict sense, the sky
brightness is not a Fourier transform of the visibilities.
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14.2.3 Inversion Of Visibilities
3D Imaging

The most straight forward method suggested by Eq. 14.2.5 for recovering the sky bright-
ness distribution, is to perform a 3D Fourier transform of V (u, v, w). This requires that
the w axis be also sampled at least at Nyquist rate. For most observations it turns out
that this is rarely satisfied and doing a FFT on the third axis would result into severe
aliasing. Therefore in practice, the transform on third axis is usually done using the
direct Fourier transform (DFT), on the un-gridded data.

For performing the 3D FT (FFT on the u and v axis and DT on the w axis) one would
still need to know the number of planes needed along the n axis. This can be found using
the geometry as shown in Fig. 14.2. The size of the synthesized beam in the n direction
is comparable to that in the other two directions and is given by ≈ λ/Bmax where Bmax is
the longest projected baseline length. Therefore the separation between the planes along
n should be ≤ λ/2Bmax. The distance between the tangent plane and points separated by
θ from the phase center is given by 1 − cos(θ) ≈ θ2/2. For critical sampling then would be

Nn = Bmaxθ
2/λ. (14.2.7)

At 327 MHz for GMRT, Bmax ≈ 25 km. Therefore, for mapping 1◦ field of view without
distortions, one would required 8 planes along the n axis. With central square alone
however, one plane should be sufficient. At these frequencies it becomes important to
map most of the primary beam since the number and the intensity of the background
sources increase and the side lobes of these background sources limit the dynamic range
in the maps. Hence, even if the source of interest is small, to get the achievable dynamic
range (or close to it!), one will need to do a 3D inversion (and deconvolution).

Another reason why more than one plane would be required for very high dynamic
range imaging is as follows. Strictly speaking, the only point which completely lies in the
tangent plane is the point at which the tangent plane touches the celestial sphere. All
other points in the image, even close to the phase center, lie slightly below the tangent
plane. Deconvolution of the tangent plane then results into distortions for the same
reason as the distortions arriving from the deconvolution of a point source which lies
between two pixels in the 2D case. As in the 2D case, this problem can be minimized by
over sampling the image and that, in this case, implies having at least 2 planes in the n
axis, even if the Eq. 14.2.7 tells that 1 plane is sufficient.

Polyhedron Imaging

As mentioned above, emission from the phase center and from points close to it lie ap-
proximately in the tangent plane. Polyhedron imaging relies on exploiting this fact by
approximating the celestial sphere by a number of tangent planes as shown in Fig. 14.3.
The visibility data is phase rotated to shift the phase center to the tangent points of the
various planes and a small region around the tangent point is then mapped using the 2D
approximation. In this case however, one needs to perform a joint deconvolution involv-
ing all tangent planes since the sides lobes of a source in one plane would leak into other
planes as well.

The number of planes required to map an object of size θ can be found simply by
requiring that maximum separation between the tangent plane and the region around
each tangent point be less than λ/Bmax, the size of the synthesized beam. As shown
earlier, the separation of a point θ degrees away from the tangent point is ≈ θ2. Hence for
critical sampling, the number of planes required is equal to the solid angle subtended by
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Figure 14.3: Approximation of the celestial sphere by multiple tangent planes (polyhedron
imaging).

the sky being mapped (θ2
f ) divided by the solid angle of the synthesized beam (θ2)

Npoly = 2θ2fBmax/λ = 2Bmaxλ/D
2 (for θf = full primary beam). (14.2.8)

Notice that the number of planes required is twice as many as the number of planes
required for 3D inversion. However since a small portion around the tangent point of
each plane is used, the size of each of these planes can be small, offsetting the increase
in computations due to the increase in the number of planes required. Another approach
which is often taken for very high dynamic range imaging is to do a full 3D imaging on
each of the planes. This would effectively increase the size of the field that can be imaged
on each tangent plane, thereby reducing the number of planes required.

The polyhedron imaging scheme is available in the current version of AIPS data re-
duction package and the 3D inversion (and deconvolution) is implemented in the (not any
more supported) SDE package written by Tim Cornwell et al. Both these schemes, in their
full glory, will be available in the (recently released) AIPS++ package.

14.3 Mosaicing
The problem due to non co-planarity discussed above are for mapping the sky within the
primary beam of the antennas (which are assumed to be identical). In this section we
discuss the techniques used to handle the problem of mapping fields of interest which
are larger than the primary beam of the antennas. The approach used is similar to that
used for mapping with a single dish, namely to scan the source to be mapped. The fact
that we are using an interferometer to synthesis the “lens” (or the a “single dish”) adds
some more complications.

These techniques are useful for mapping with interferometers operating in the mil-
limeter range where the size of the primary beams is less than an arcmin and at meter
wavelengths where the primary beams are larger but so is the extent of emission. For
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example, the primary beam of GMRT antennas at 327 MHz is ≈ 1.3◦ and there are map-
ping projects which would benefit from mapping regions of the sky larger than this (for
example, in the Galactic plane).

14.3.1 Scanning Interferometer
The co-planar approximation of Eq. 14.1.1 for a pointing direction given by (lo,mo) can
be written as

V (u, v, lo,mo) =

∫ ∫
I(l,m)B(l − lo,m−mo)e

2πι(ul+vm)dldm. (14.3.9)

Here we also assume that B is independent of the pointing direction and we label V
with not just the (u, v) co-ordinates, but also with pointing direction since visibilities for
different directions will be used in the analysis that follows. The advantage of writing
the visibility as in Eq. 14.3.9 is that the pointing center (given by (lo,mo)) and the phase
center (given by (l,m) = (0, 0)) are separated.

V (0, 0, lo,mo) represents the single dish observation in the direction (lo,mo) and is just
the convolution of the primary beam with the source brightness distribution, exactly as
expected intuitively. Extending the intuition further, as is done in mapping with a sin-
gle dish, we need to scan the source around (lo,mo) with the interferometer, which is
equivalent to scanning with a single dish with a primary beam of the size of the synthe-
sized beam of the interferometer. Then Fourier transforming V (u, v, lo,mo) with respect to
(lo,mo), assuming that B is symmetric, one gets, from Eq. 14.3.9

∫ ∫
V (u, v, lo,mo)e

2πι(uolo+vomo)dlodmo = b(uo, vo)i(u+ uo, v + vo), (14.3.10)

where (uo, vo) corresponds to the direction (lo,mo) and b 
 B and i 
 I. This equation
essentially tells us the following: Fourier transform of the visibility with respect to the
pointing directions, from a scanning interferometer is equal to the visibility of the entire
source modulated by the Fourier transform of the primary beams for each pointing direc-
tion. For a given direction (lo,mo) we can recover spatial frequency information spread
around a nominal point (u, v) by an amount D/λ where D is the size of the dish. In terms
of information, this is exactly same as recovering spatial information smaller than the
size of the resolution of a single dish by scanning the source with a single dish. As in the
case of a single dish, continuous scanning is not necessary and two points separated by
half the primary beam is sufficient. In principle then, by scanning the interferometer, one
can improve the short spacings measurements of V , which is crucial for mapping large
fields of view.

Image of the sky can now be made using the full visibility data set (made using the Eq.
14.3.10). However, this involves the knowledge of Fourier transform of the sky brightness
distribution, which in-turn is approximated after deconvolution. Hence, in practice one
uses the MEM based image recovery where one maximizes the entropy given by

H = −
∑

k

Ikln
Ik
Mk

, (14.3.11)

with χ2 evaluated as

χ2 =
∑

k

|V (uk, vk, lok,mok) − V M (uk, vk, lok,mok)|2
σ2
V (uk,vk ,lok,mok)

, (14.3.12)

where V M (uk, vk, lok,mok) is the model visibility evaluated using Eq. 14.3.9. For calcula-
tion of ∆χ2 in each iteration is estimated by the following steps:
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• initialize ∆χ2 = 0

• For all pointings

1. Apply the appropriate primary beam correction to the current estimate of the
image

2. FT to generated V M

3. Accumulate χ2

4. Subtract from the observed visibilities
5. Make the residual image
6. Apply the primary beam correction to the residual image
7. Accumulate ∆χ2

The operation of primary beam correction on the residual image is understood by the
following argument: For any given pointing, an interferometer gathers radiation within
the primary beam. In the image plane then, any feature, outside the range of the primary
beam would be due to the side lobes of the synthesized beam and must be suppressed
before computation of ∆χ2 and this is achieved by primary beam correction, which es-
sentially divides the image by gaussian which represents the main lobe of the antenna
radiation pattern.

This approach (rather than joint deconvolution) has several advantages.

1. Data from potentially different interferometers for different pointings can be used

2. Weights on each visibility from each pointing are used in the entire image recon-
struction procedure

3. Single-dish imaging emerges as a special case

4. It is fast for extended images

The most important advantage that one gets by MEM reconstruction is that the de-
convolution is done simultaneously on all points. That this is an advantage over joint-
deconvolution can be seen as follows: If a point source at the edge of the primary beam
is sampled by 4 different pointings of the telescope, this procedure would be able to use
4 times the data on the same source as against data from only one pointing in joint-
deconvolution (where deconvolution is done separately on each pointing). This, apart
from improvement in the signal-to-noise ratio also benefits from a better uv-coverage
available.

Flexible software for performing Mosaic-ed observations is one of the primary moti-
vation driving the AIPS++ project in which algorithms to handle mosaic-ed observations
would be available in full glory.
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