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Deconvolution in sythesis
imaging–an introduction

Rajaram Nityananda

12.1 Preliminaries
These lectures describe the two main tools used for deconvolution in the context of radio
aperture synthesis. The focus is on the basic issues, while other lectures at this school
will deal with aspects closer to the actual practice of deconvolution. The practice is
dominated by the descendants of a deceptively simple-looking , beautiful idea proposed
by J. Högbom (A&A Suppl. 15 417 1974), which goes by the name of CLEAN. About the
same time, another, rather different and perhaps less intuitive idea due to the physicist
E.T. Jaynes was proposed by J.G. Ables (A&A Suppl 15 383 1974) for use in astronomy.
This goes by the name of the Maximum Entropy Method, MEM for short. MEM took a
long time to be accepted as a practical tool and even today is probably viewed as an exotic
alternative to CLEAN. We will see, however, that there are situations in which it is likely to
do better, and even be computationally faster. The goal of these lectures is to give enough
background and motivation for new entrants to appreciate both CLEAN and MEM and go
deeper into the literature.

12.2 The Deconvolution Problem
12.2.1 Interferometric Measurements
An array like the GMRT measures the visibility function V (u, v) along baselines which
move along tracks in the u − v plane as the earth rotates, For simplicity, let us assume
that these measurements have been transferred onto a discrete grid and baselines are
measured in units of the wavelength. The sky brightness distribution I(l,m) in the field
of view is a function of l,m which are direction cosines of a unit vector to a point on the
celestial sphere referred to the u and v axes. The basic relationship between the measured
visibility function V and the sky brightness I is a Fourier transform.

V (u, v) =

∫ ∫
I(l,m) exp(−2πi(lu+mv)) dl dm.
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This expression also justifies the term “spatial frequency” to describe the pair (u, v), since
u and v play the same role as frequency plays in representing time varying signals.

Many things have been left out in this expression, such as the proper units, polarisa-
tion, the primary beam response of the individual antennas, the non-coplanarity of the
baselines, the finite observing bandwidth, etc. But it is certainly necessary to understand
this simplified situation first, and the details needed to achieve greater realism can be
put in later.

Aperture synthesis, as originally conceived, involved filling in the u − v plane without
any gaps upto some maximum baseline bmax which would determine the angular resolu-
tion. Once one accepts this resolution limit, and writes down zeros for visibility values
outside the measured circle, the Fourier transform can be inverted. One is in the happy
situation of having as many equations as unknowns. A point source at the field cen-
tre.(which has constant visibility) would be reconstructed as the Fourier transform of a
uniformly filled circular disk of diameter 2bmax. This is the famous Airy pattern with its
first zero at 1.22/(2bmax). The baseline b is already measured in wavelengths, hence the
missing λ in the numerator. But even in this ideal situation, there are some problems.
Given an array element of diameter D (in wavelengths again!), the region of sky of interest
could even be larger than a circle of angular diameter 2/D. A Fourier component describ-
ing a fringe going through one cycle over this angle corresponds to a baseline of D/2. But
measuring such a short baseline would put two dishes into collision, and even somewhat
larger baselines than D run the risk of one dish shadowing the other. In addition, the
really lowest Fourier component corresponds to (u, v) = (0, 0), the total flux in the primary
beam. This too is not usually measured in synthesis instruments Thus, there is an in-
evitable “short and zero spacings problem” even when the rest of the u − v plane is well
sampled.

12.2.2 Dirty Map and Dirty Beam
But the real situation is much worse. With the advent of the Very Large Array (VLA),
the majestic filling in of the u − v plane with samples spaced at D/2 went out of style. If
one divides the field of view into pixels of size 1/(2bmax), then the total number of such
pixels (resolution elements) would be significantly larger than the number of baselines
actually measured in most cases. This is clearly seen in plots of u − v coverage which
have conspicuous holes in them. The inverse Fourier transform of the measured visibility
is now hardly the true map because of the missing data. But it still has a name - the
“dirty map” ID. We define a sampling cum weighting function W (u, v) which is zero where
there are no measurements and in the simplest case (called uniform weighting) is just
unity wherever there are measurements. So we can get our limited visibility coverage
by taking the true visibilities and multiplying by W (u, v). This multiplication becomes a
convolution in the sky domain. The “true” map with full visibility coverage is therefore
convolved by the inverse Fourier transform of W which goes by the name of the “dirty
beam” BD(l,m).

ID(l,m) =

∫ ∫
I(l′,m′)BD(l − l′,m−m′) dl′ dm′

where
BD(l,m) ∝

∑
W (u, v) exp(+2πi(lu+mv)).

For a patchy u − v coverage, which is typical of many synthesis observations, BD has
strong sidelobes and other undesirable features. This makes the dirty map difficult to
interpret. What one sees in one pixel has contributions from the sky brightness in neigh-
bouring and even not so neighbouring pixels. For the case of W = 1 within a disk of
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radius bmax we get an Airy pattern as mentioned earlier. This is not such a dirty beam
after all, and could be cleaned up further by making the weighting non-uniform, i.e. ta-
pering the function W down to zero near the edge |(u, v)| = bmax. For example, if this
weighting is approximated by a Gaussian, then the sky gets convolved by its transform,
another Gaussian. This dirty map is now related to the true one in a reasonable way.
But, as Ables remarked, should one go to enormous expense to build and measure the
longest baseline and then multiply it by zero?

12.2.3 The Need for Deconvolution
Clearly, there has to be a better way than just reweighting the data to make the dirty beam
look better, (and fatter, incidentally, since one is suppressing high spatial frequencies),
But this better way has to play the dangerous game of interpolating (for short spacings
and for gaps in the u− v plane) and extrapolating (for values beyond the largest baseline)
the visibility function which was actually measured. The standard terminology is that
the imaging problem is “underdetermined” or “ill-posed” or “ill-conditioned”. It has fewer
equations than unknowns. However respectable we try to make it sound by this termi-
nology, we are no better than someone solving x + y = 1 for both x and y!. Clearly, some
additional criterion which selects one (or a few) solutions out of the infinite number pos-
sible has to be used. The standard terminology for this criterion is “a priori information”.
The term “a priori” was used by the philosopher Kant to describe things in the mind that
did not seem to need sensory input, and is hence particularly appropriate here.

One general statement can be made. If one finds more than one solution to a given
deconvolution problem fitting a given data set, then subtracting any two solutions should
give a function whose visibility has to vanish everywhere on the data set. Such a bright-
ness distribution, which contains only unmeasured spatial frequencies, is appropriately
called an “invisible distribution”. Our extra- /inter- polation problem consists in finding
the right invisible distribution to add to the visible one!

One constraint often mentioned is the positivity of the brightness of each pixel. To
see how powerful this can be, take a sky with just one point source at the field centre.
The total flux and two visibilities on baselines (D/2, 0), (0, D/2) suffice to pin down the
map completely. The only possible value for all the remaining visibilities is equal to
these numbers, which are themselves equal. One cannot add any invisible distribution to
this because it is bound to go negative somewhere in the vast empty spaces around our
source. But this is an extreme case. The power of positivity diminishes as the field gets
filled with emisssion.

Another interesting case is when the emission is known to be confined to a window
in the map plane. Define a function w(l,m) = 1 inside the window and zero outside.
Let w̃(u, v) be its Fourier transform. Multiplying the map by w makes no difference. In
Fourier space, this condition is quite non-trivial, viz V (u, v) = V (u, v) ∗ w̃(u, v). Notice how
the convolution on the right transfers information from measured to unmeasured parts
of the u− v plane, and couples them.

12.3 CLEAN
12.3.1 The Högbom Algorithm
Consider a sky containing only isolated point sources. In the dirty map, each appears as
a copy of the dirty beam, centred on the source position and scaled by its strength. How-
ever, the maxima in the map do not strictly correspond to the source positions, because
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each maximum is corrupted by the sidelobes of the others, which could shift it and alter
its strength. The least corrupted, and most corrupting, source is the strongest. Why not
take the largest local maximum of the dirty map as a good indicator of its location and
strength? And why not subtract a dirty beam of the appropriate strength to remove to a
great extent the bad effects of this strongest source on the others? The new maximum
after the subtraction now has a similar role. At every stage, one writes down the co-
ordinates and strengths of the point sources one is postulating to explain the dirty map.
If all goes well, then at some stage nothing (or rather just the inevitable instrumental
noise) would be left behind. We would have a collection of point sources, the so called
CLEAN components, which when convolved with the dirty beam give the dirty map.

One could exhibit this collection of point sources as the solution to the deconvolution
problem, but this would be arrogant, since one has only finite resolution. As a final ges-
ture of modesty, one replaces each point source by (say) a gaussian, a so called “CLEAN”
beam, and asserts that the sky brightness, convolved with this beam, has been found.

This strategy, which seems so reasonable today, was a real breakthrough in 1974
when proposed by J. Högbom. Suddenly, one did not have to live with sidelobes caused
by incomplete u− v coverage. In fact, the planning for new telescopes like the VLA must
have taken this into account- one was no longer afraid of holes.

12.3.2 The Behaviour of CLEAN
With hindsight, one can say that the initial successes were also due to the simplicity
of the sources mapped. It is now clear that one should not be applying this method to
an extended source which covered several times the resolution limit (the width of the
central peak of the dirty beam). Such a source could have a broad, gentle maximum in
the dirty map, and subtracting a narrow dirty beam at this point would generate images
of the sidelobes with the opposite sign. This would generate new maxima where new
CLEAN components would be placed by the algorithm, and things could go unstable.
One precaution which certainly helps is the “gain factor” (actually a loss factor since it
is less than one). After finding a maximum, one does not subtract the full value but a
fraction g typically 0.2 or less. In simple cases, this would just make the algorithm slower
but not change the solution. But this step actually helps when sources are more complex.
One is being conservative in not fully believing the sources found initially. This gives the
algorithm a chance to change its mind and look for sources elsewhere. If this sounds
like a description of animal behaviour, the impression being conveyed is correct. Our
understanding of CLEAN is largely a series of empirical observations and thumb rules,
with common sense rationalisations after the fact, but no real mathematical theory. One
exception is the work of Schwarz (A&A 65 345 1978) which interpreted each CLEAN
subtraction as a least squares fit of the current dirty map to a single point source. This
is interesting but not enough. CLEAN carries out this subtraction sequentially, and that
too with a gain factor. In principle, each value of the gain factor could lead to a different
solution, i.e a different collection of CLEAN components, in the realistic case when the
number of u − v points is less than the number of resolution elements in the map. So
what are we to make of the practical successes of CLEAN? Simply that in those cases, the
patch of the sky being imaged had a large enough empty portion that the real number of
CLEAN components neeeded was smaller than the number of data points available in the
u−v plane. Under such conditions, one could believe that the solution is unique. Current
implementations of CLEAN allow the user to define “windows” in the map so that one does
not look for CLEAN components outside them. But when a large portion of the field of
view has some nonzero brightness, there are indeed problems with CLEAN. The maps
show spurious stripes whose separation is related to unmeasured spatial frequencies
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(that’s how one deduces they are spurious). One should think of this as a wrong choice
of invisible distribution which CLEAN has made. Various modifications of CLEAN have
been devised to cope with this, but the fairest conclusion is that the algorithm was never
meant for extended structure. Given that it began with isolated point sources it has done
remarkably well in other circumstances.

12.3.3 Beyond CLEAN
Apart from the difficulties with extended sources, CLEAN as described above is an inher-
ently slow procedure. If N is the number of pixels, subtracting a single source needs of
the order of N operations. This seems a waste when this subtraction is a provisional,
intermediate step anyway! B.G. Clark had the insight of devising a faster version, which
operates with a truncated dirty beam, but only on those maxima in the map strong
enough that the far, weak sidelobes make little difference. Once these sources have been
identified by this rough CLEAN (called a “minor cycle”), they are subtracted together from
the full map using an fast fourier transform (FFT) for the convolution, which takes only
N logN operations. This is called the “major cycle”. The new residual map now has a new
definition of “strong” and the minor cycle is repeated.

A more daring variant, due to Steer, Dewdney, and Ito, (hence SDI CLEAN) carries out
the minor cycle by simply identifying high enough maxima, without even using CLEAN,
which is kept for the major cycle. Other efforts to cope with extended sources go under
the name of “multiresolution CLEAN”. One could start with the inner part of the u−v plane
and do a CLEAN with the appropriate, broader dirty beam. The large scale structure thus
subtracted will hopefully now not spoil the next stage of CLEAN at a higher resolution, i.e
using more of the u− v plane.

12.4 Maximum Entropy
12.4.1 Bayesian Statistical Inference
This method, or class of methods, is easy to describe in the framework of an approach
to statistical inference (i.e all of experimental science?) which is more than two hundred
years old, dating from 1763! Bayes Theorem about conditional probabilities states that

P (A|B)P (B) = P (B|A)P (A) = P (A,B).

As a theorem, it is an easy consequence of the definitions of joint probabilities (denoted
by P (A,B)), conditional probabilities (denoted by P (A|B)) and marginal or unconditional
probabilities (denoted by P (A)). In words, one could say that the fraction of trials A and
B both happen (P (A,B)) is the product of (i) the fraction of trials in which A happens
(P (A)) irrespective of B, and (ii) the further fraction of A-occurences which are also B-
occurences (P (B|A)). The other form for P (A|B) follows by interchanging the roles of A
and B.

The theorem acquires its application to statistical inference when we think of A as a
hypothesis which is being tested by measuring some data B. In real life, with noisy and
incomplete data, we never have the luxury of measuring A directly, but only something
depending on it in a nonunique fashion. If we understand this dependence, i.e under-
stand our experiment, we know P (B|A). If only, (and this is a big IF!), someone gave
us P (A), then we would be able to compute the dependence of P (A|B) on A from Bayes
theorem.

P (A|B) = P (B|A)P (A)/P (B).
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Going from P (B|A) to P (A|B) may not seem to be a big step for a man, but it is a giant
step for mankind. It now tells us the probability of different hypotheses A being true
based on the given data B. Remember, this is the real world. More than one hypothesis
is consistent with a given set of data, so the best we can do is narrow down the possibil-
ities. (If “hypothesis” seems too abstract, think of it as a set of numbers which occur as
parameters in a given model of the real world)

12.4.2 MEM Images
Descending now from the sublime to aperture synthesis, think of A as the true map and
B as the dirty map, or equivalently its Fourier transform, the set of measured visiblilities.
We usually want a single map, not a probability distribution of A. So we need the further
step of maximising P (A|B) with respect to A. All this is possible if P (A) is available for a
given true map I(l,m). One choice, advocated by Gull and Daniell in 1978, was to take

logP ({I(l,m)}) ∝ −
∫ ∫

I(l,m) ln I(l,m) dl dm.

The curly brackets around I on the left side are meant to remind us that the entropy
is a single number computed from the entire information about the brightness, i.e the
whole set of pixel values. Physicists will note that this expression seems inspired by
Boltzmann’s formula for entropy in statistical mechanics, and communication engineers
will see the influence of Shannon’s concept of information. It was E.T. Jaynes writing in
the Physical Review of 1957 who saw a vision of a unified scheme into which physics,
communication theory, and statistical inference would fall (with the last being the most
fundamental!). In any case, the term “entropy” for the logarithm of the prior distribution
of pixel values has stuck. One can see that if the only data given was the total flux, then
the entropy as defined above is a maximum when the flux is distributed uniformly over
the pixels. This is for the same reason that the Boltzmann entropy is maximised when
a gas fills a container uniformly. This is the basis for the oft-heard remark that MEM
produces the flattest or most featureless map consistent with the data - a statement we
will see requires some qualification. But if one does not want this feature, a modified
entropy function which is the integral over the map of −I ln(I/Id) is defined. Id(l,m) is
called a “default image”. One can now check that if only total flux is given the entropy is
a maximum for I ∝ Id.

The selection of a prior is, in my view, the weakest part of Bayesian inference, so
we will sidestep the debate on the correct choice. Rather, let us view the situation as
an opportunity, a license to explore the consequences of different priors on the “true”
maps which emerge. This is easily done by simulation – take a plausible map, Fourier
transform, sample with a function W so that some information is now missing, and use
your favourite prior and maximise “entropy” to get a candidate for the true map. It is
this kind of study which was responsible for the great initial interest in MEM. Briefly,
what MEM seemed to do in simple cases was to eliminate the sidelobes and even resolve
pairs of peaks which overlapped in the true map, i.e it was sometimes “better” than the
original! This last feature is called superresolution, and we will not discuss this in the
same spirit of modesty that prompted us to use a CLEAN beam. Unlike CLEAN, MEM did
not seem to have a serious problem with extended structure, unless it had a sharp edge
(like the image of a planet). In this last case, it was found that MEM actually enhanced
the ripples near the edge which were sitting at high brightness levels; though it controlled
the ripples which were close to zero intensity. This is perhaps not surprising if one looks
at the graph of the function = I ln I. There is much more to be gained by removing ripples
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near I = 0 than at higher values of I, since the derivative of the function is higher near
I = 0.

Fortunately, these empirical studies of the MEM can be backed up by an analyti-
cal/graphical argument due to Ramesh Narayan, which is outlined below. The full conse-
quences of this viewpoint were developed in a review article (Annual review of Astronomy
and Astrophysics 24 127 1986), so they will not be elaborated here, but the basic reason-
ing is simple and short enough. Take the expression for the entropy, and differentiate it
with respect to the free parameters at our disposal, namely the unmeasured visibilities,
and set to zero for maximisation. The derivative of the entropy taken with respect to a
visibility V (u′, v′) is denoted by M(u′, v′). The understanding is that u′, v′ have not been
measured. The condition for a maximum is

M(u′, v′) =

∫ ∫
(−1 − ln(I(l,m)) exp(+2πi(lu′ +mv′) dl dm = 0.

This can be interpreted as follows. The logarithm of the brightness is like a dirty map, i.e it
has no power at unmeasured baselines, and hence has sidelobes etc. But the brightness
I itself is the exponential of this “band limited function” (i.e one with limited spatial
frequency content). Note first of all that the positivity constraint is nicely implemented–
exponentials are positive. Since the exponential varies rather slowly at small values of
I, the ripples in the “baseline” region between the peaks are suppressed. Conversely,
the peaks are sharpened by the steep rise of the exponential function at larger values of
I. One could even take the extreme point of view that the MEM stands unmasked as a
model fitting procedure with sufficient flexibility to handle the cases usually encountered.
Högbom and Subrahmanya independently emphasised very early that the entropy is just
a penalty function which encourages desirable behaviour and punishes bad features in
the map (IAU Colloq. 49, 1978). Subrahmanya’s early work on the deconvolution of lunar
occultation records at Ooty (TIFR thesis, 1977) was indeed based on such penalties.

More properties of the MEM solution are given in the references cited earlier. But one
can immediately see that taking the exponential of a function with only a limited range
of spatial frequencies (those present in the dirty beam) is going to generate all spatial
frequencies, i.e., one is extrapolating and interpolating in the u− v plane. It is also clear
that the fitting is a nonlinear operation because of the exponential. Adding two data
sets and obtaining the MEM solution will not give the same answer as finding the MEM
solution for each separately and adding later! A little thought shows that this is equally
true of CLEAN.

If one has a default image Id in the definition of the entropy function, then the same
algebra shows that I/Id is the exponential of a band-limited function. This could be
desirable. For example, while imaging a planet, if the sharp edge is put into Id, then
the MEM does not have to do so much work in generating new spatial frequencies in the
ratio I/Id. The spirit is similar to using a window to help CLEAN find sources in the right
place.

12.4.3 Noise and Residuals
The discussion so far has made no reference to noise in the interferometric measure-
ments. But this can readily be accomodated in the Bayesian framework. One now treats
the measurements not as constraints but as having a Gaussian distribution around the
“true” value which the real sky would Fourier transform to. Thus the first factor P (B|A)
on the right hand side of Bayes theorem would now read

P (B|A) =
∏

exp(−(

∫ ∫
I(l,m)exp(−2πi(lu+mv)) dl dm− Vm(u, v)|2/2σ2

u,v.
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The product is over measured values of u, v. A nice feature of the gaussian distribution is
that when we take its logarithm, we get the sum of the squares of the residuals between
the model predictions (the integral above) and the measurements Vm(u, v) – also known
as “chi-squared” or χ2. The logarithm of the prior is of course the entropy factor. So, in
practice, we end up maximising a linear combination of the entropy and χ2, the latter
with a negative coefficient. This is exactly what one would have done, using the method
of Lagrange multipliers, if we were maximising entropy subject to the constraint that the
residuals should have the right size, predicted by our knowledge of the noise.

All is not well with this recipe for handling the noise. The discrepancy between the
measured data and the model predictions can be thought of as a residual vector in a
multidimensional data space. We have forced the length to be right, but what about the
direction? True residuals should be random, i.e the residual vector should be uniformly
distributed on the sphere of constant χ2. But since we are maximising entropy on this
sphere, there will be a bias towards that direction which points along the gradient of the
entropy function. This shows in the maps as a systematic deviation tending to lower the
peaks and raise the “baseline” i.e the parts of the image near zero I. To lowest order, this
can be rectified by adding back the residual vector found by the algorithm. This does not
take care of the invisible distribution which the MEM has produced from the residuals,
but is the best we can do. Even in the practice of CLEAN, residuals are added back for
similar reasons.

The term “bias” is used by statisticians to describe the following phenomenon. We
estimate some quantity, and even after taking a large number of trials its average is
not the noise-free value. The noise has got “rectified” by the non-linear algorithm and
shows itself as a systematic error. There are suggestions for controlling this bias by
imposing the right distribution and spatial correlations of residuals. These are likely to
be algorithmically complex but deserve exploration. They could still leave one with some
subtle bias since one cannot really solve for noise. But to a follower of Bayes, bias is not
necesarily a bad thing. What is a prior but an expression of prejudice? Perhaps the only
way to avoid bias is to stop with publishing a list of the measured visibility values with
their errors. Perhaps the only truly open mind is an empty mind!
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