
Chapter 1

Signals in Radio Astronomy

Rajaram Nityananda

1.1 Introduction

The record of the electric field E(t), received at a point on earth from a source of radio
waves can be called a “signal”, so long as we do not take this to imply intelligence at
the transmitting end. Emanating as it does from a large object with many independently
radiating parts, at different distances from our point, and containing many frequencies,
this signal is naturally random in character. In fact, this randomness is of an extreme
form. All measured statistical properties are consistent with a model in which different
frequencies have completely unrelated phases, and each of these phases can vary ran-
domly from 0 to 2π. A sketch of such a signal is given in Fig. 1.1. The strength (squared
amplitude or power) of the different frequencies ω has a systematic variation which we
call the “power spectrum” S(ω). This chapter covers the basic properties of such sig-
nals, which go by the name of “time-stationary gaussian noise”. Both the signal from
the source of interest, as well as the noise added to this cosmic signal by the radio tele-
scope recievers can be described as time-stationary gaussian noise. The word noise of
course refers to the random character. “Noise” also evokes unwanted disturbance, but
this of course does not apply to the signal from the source (but does apply to what our
receivers unavoidably add to it). The whole goal of radio astronomy is to receive, process,
and interpret these cosmic signals, (which were, ironically enough, first discovered as
a “noise” which affected trans-atlantic radio communication). “Time–Stationary” means
that the signal in one time interval is statistically indistinguishable from that in another
equal duration but time shifted interval. Like all probabilistic statements, this can never
be precisely checked but its validity can be made more probable (circularity intended!)
by repeated experiments. For example, we could look at the probability distribution of
the signal amplitude. An experimenter could take a stretch of the signal say, from times
0 to T , select N equally spaced values E(ti), i going from 1 to N , and make a histogram
of them. The property of time stationarity says that this histogram will turn out to be
(statistically) the same — with calculable errors decreasing as N increases! — if one had
chosen instead the stretch from t to t+ T , for any t. The second important characteristic
property of our random phase superposition of many frequencies is that this histogram
will tend to a gaussian, with zero mean as N tends to infinity.
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Figure 1.1: A signal made by superposition of many frequencies with random phases

1.2 Properties of the Gaussian
The general statement of gaussianity is that we look at the joint distribution of N ampli-
tudes x1 = E(t1), x2 = E(t2), . . . etc. This is of the form

P (x1 . . . xk) = const× exp (−Q(x1, x2, . . . xk))

Q is a quadratic expression which clearly has to increase to +∞ in any direction in the
k dimensional space of the x’s. For just one amplitude,

P (x1) =
1

σ
√

2π
e−x

2
1/2σ

2

does the job and has one parameter, the “Variance”σ, the mean being zero. This
variance is a measure of the power in the signal. For two variables, x1 and x2, the general
mathematical form is the “bivariate gaussian”

P (x1, x2) = const× exp

(
−1

2
(a11x

2
1 + 2a12x1x2 + a22x

2
2)

)

.
Such a distribution can be visualised as a cloud of points in x1 − x2 space, whose

density is constant along ellipses Q =constant (see Fig. 1.2).
The following basic properties are worth noting (and even checking!).

1. We need a11, a22, and a11a22 − a2
12 all > 0 to have ellipses for the contours of constant

P ( hyperbolas or parabolas would be a disaster, since P would not fall off at infinity).

2. The constant in front is

(1/2π) ×
√

det

∣∣∣∣
a11 a12

a12 a22
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Figure 1.2: Contour lines of a bivariate gaussian distribution

3. The average values of x2
1, x

2
2 and x1x2, when arranged as a matrix (the so called

covariance matrix) are the inverse of the matrix of a’s. For example,

〈x2
1〉 = a22/detA

〈x1x2〉 = a12/detA

etc.

4. By time stationarity,
< x2

1 >=< x2
2 >= σ2

< x2
1 >=< x2

2 >= σ2

The extra information about the correlation between x1 and x2 is contained in <
x1x2 >, i.e. in a12 which (again by stationarity) can only be a function of the time
separation τ = t1 − t2. We can hence write < E(t)E(t + τ) >= C(τ) independent of t.
C(τ) is called the autocorrelation function. From (1) above, C2(τ) ≤ σ2. This suggests
that the quantity r(τ) = C(τ)/σ2 is worth defining, as a dimensionless correlation
coefficient, normalised so that r(0) = 1. The generalisation of all these results for a
k variable gaussian is given in the Section 1.8

1.3 The Wiener-Khinchin Theorem
So far, we have only asserted that the sum of waves with random phases generates a
time-stationary gaussian signal. We now have to check this. It is convenient to start with
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a signal going from 0 to T , and only later take the limit T → ∞. The usual theory of
Fourier series tells us that we can write

E(t) ≡
∑

an cosωnt+ bn sinωnt

≡
∑

rn cos(ωnt+ ϕn)

where,
ωn =

2π

T
, rn =

√
anx2 + b2n, and tanϕn = −bn/an

Notice that the frequencies come in multiples of the “fundamental” 2π/T which is very
small since T is large, and hence they form a closely spaced set. We can now compute
the autocorrelation

C(τ) = 〈E(t)E(t + τ)〉 = 〈
∑

n

rn cos(ωnt+ ϕn)
∑

m

rm cos(ωm(t+ τ) + ϕm)〉

The averaging on the right hand side has to be carried out by letting each of the phases
ϕk vary independently from 0 to 2π. When we do this, only terms with m = n can survive,
and we get

C(τ) =
∑ 1

2
r2n cosωnτ

.
Putting τ equal to zero, we get the variance

C(0) = 〈E(t)2〉 =
∑ 1

2
r2n

We note that the autocorrelation is independent of t and hence we have checked time
stationarity, at least for this statistical property. We now have to face the limit T → ∞.
The number of frequencies in a given range ∆ω blows up as

∆ω

(2π/T )
=
T∆ω

2π
.

Clearly, the r2n have to scale inversely with T if statistical qualities like C(τ) are to have
a well defined T → ∞ behaviour. Further, since the number of rn’s even in a small interval
∆ω blows up, what is important is their combined effect rather than the behaviour of any
individual one. All this motivates the definition.

∑

ω<ωn<ω+∆ω

r2n
2

= 2S(ω)∆ω

as T → ∞. Physically, 2S(ω)∆ω is the contribution to the variance 〈E2(t)〉 from the
interval ω to ω + ∆ω. Hence the term “power spectrum” for S(ω). Our basic result for the
autocorrelation now reads

C(τ) =

∫ ∞

0

2S(ω) cosωτdω =

∫ +∞

−∞
S(ω)e−iωτdω

if we define S(−ω) = S(ω).
This is the “Wiener–Khinchin theorem” stating that the autocorrelation function is

the Fourier transform of the power spectrum. It can also be written with the frequency
measured in cycles (rather than radians) per second and denoted by ν.
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C(τ) =

∫ ∞

0

2P (ν) cos(2πντ)dν =

∫ +∞

−∞
P (ν)e−2πiντdν

and as before, P (−ν) = P (ν).
In this particular case of the autocorrelation, we did not use independence of the ϕ ’s.

Thus the theorem is valid even for a non-gaussian random process. (for which different
ϕ ’s are not independent). Notice also that we could have averaged over t instead of
over all the ϕ’s and we would have obtained the same result, viz. that contributions
are nonzero only when we multiply a given frequency with itself. One could even argue
that the operation of integrating over the ϕ’s is summing over a fictitious collection (i.e
“ensemble”) of signals, while integrating over t and dividing by T is closer to what we do
in practice. The idea that the ensemble average can be realised by the more practical
time average is called “ergodicity” and like everything else here, needs better proof than
we have given it. A rigorous treatment would in fact start by worrying about existence of
a well-defined T → ∞ limit for all statistical quantities, not just the autocorrelation. This
is called “proving the existence of the random process”.

The autocorrelation C(τ) and the power spectrum S(ω) could in principle be measured
in two different kinds of experiments. In the time domain, one could record samples of
the voltage and calculate averages of lagged products to get C. In the frequency domain
one would pass the signal through a filter admitting a narrow band of frequencies around
ω, and measure the average power that gets through.

A simple but instructive application of the Wiener Khinchin theorem is to a power spec-
trum which is constant (“flat band”) between ν0 −B/2 and ν0 +B/2. A simple calculation
shows that

C(τ) = 2KB (cos(2πν0τ))

(
sin(πBτ)

πBτ

)

The first factor 2KB is the value at τ = 0, hence the total power/variance to radio
astronomers/statisticians. The second factor is an oscillation at the centre frequency.
This is easily understood. If the bandwidth B is very small compared to ν0, the third factor
would be close to unity for values of τ extending over say 1/4B, which is still many cycles
of the centre frequency. This approaches the limiting case of a single sinusoidal wave,
whose autocorrelation is sinusoidal. The third sinc function factor describes “bandwidth
decorrelation1”, which occurs when τ becomes comparable to or larger than 1/B.

Another important case, in some ways opposite to the preceding one, occurs when
ν0 = B/2, so that the band extends from 0 to B. This is a so-called “baseband”. In this
case, the autocorrelation is proportional to a sinc function of 2πBτ . Now, the correlation
between a pair of voltages measured at an interval of 1/2B or any multiple (except zero!)
thereof is zero, a special property of our flat band. In this case, we see very clearly that a
set of samples measured at this interval of 1/2B, the so-called “Nyquist sampling interval”,
would actually be statistically independent since correlations between any pair vanish
(this would be clearer after going through Section 1.8). Clearly, this is the minimum
number of measurements which would have to be made to reproduce the signal, since if
we missed one of them the others would give us no clue about it. As we will now see, it is
also the maximum number for this bandwidth!

1.4 The Sampling Theorem
This more general property of a band-limited signal (one with zero power outside a band-
width B) goes by the name of the “Shannon Sampling Theorem”. It states that a set of

1also called “fringe washing” in Chapter 4
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samples separated by 1/2B is sufficient to reconstruct the signal. One can obtain a pre-
liminary feel for the theorem by counting Fourier coefficients. The number of parameters
defining our signal is twice the number of frequencies, (since we have an a and a b, or
an r and a ϕ, for each ωn). Hence the number of real values needed to specify our signal
for a time T is

2 × ∆ωT

2π
= 2

(
∆ω

2π

)
T = 2BT

This rate at which new real numbers need to be measured to keep pace with the signal
is 2B. The so called “Nyquist sampling interval” is therefore (2B)−1. A real proof (sketched
in Section 1.8) would give a reconstruction of the signal from these samples!

In words, the Shannon criterion is two samples per cycle of the maximum frequency
difference present. The usual intuition is that the centre frequency ν0 does not play a
role in these considerations. It just acts a kind of rapid modulation which is completely
known and one does not have to sample variations at this frequency. This intuition
is consistent with radio engineers/astronomers fundamental right to move the centre
frequency around by heterodyning2 with local (or even imported3) oscillators, but a more
careful examination shows that the centre frequency should satisfy ν0 = (n + 1

2 )B for the
sampling at a rate 2B to work.

1.5 The Central Limit and Pairing Theorems
We now come to the statistics of E(t). For example, we already know that 〈E2(t)〉 =

∑
r2n/2.

How about 〈E3(t)〉? Quite easy to check that it is zero because

〈rlrmrn cos(ωmt+ ϕm) cos(ωnt+ ϕn) cos(ωlt+ ϕl)〉 = 0

when we let the ϕ’s each vary independently over the full circle 0 to 2π. This is true
whether l,m, n are distinct or not. But coming to even powers like 〈E4(t)〉, something
interesting happens. When we integrate a product like rlrmrnrp cos(ωmt + ϕm) cos(ωnt +
ϕn) cos(ω`t + ϕl) cos(ωpt + ϕp) over all the four ϕ’s we can get non-zero answers, provided
the ϕ’s occur in pairs, i.e., if l = m and n = p, then we encounter cos2 ϕl×cos2 ϕn which has
a non-zero average. (We saw a particular case of this when we calculated 〈E(t)E(t + τ)〉
and only r2m type terms survived).

Because of the random and independent phases of the large number of different fre-
quencies, we can now state the “pairing theorem”.

〈E(t1)E(T2) . . . E(t2k)〉 =
∑

pairs

〈E(t1)E(t2)〉 . . . 〈E(t2k−1)E(t2k)〉

As discussed in Section 1.8, this pairing theorem proves that the statistics is gaussian.
(A careful treatment shows that only the r2mr2n terms are equal on the two sides- we have
not quite got the r4m terms right, but there are many more (of the order of N times more)
of the former type and they dominate as T → ∞ and the numbers of sines and cosines
we are adding is very large). This result — that the sum of a large number of small, finite
variance, independent terms has a gaussian distribution — is a particular case of the
“central limit theorem”. We only need the particular case where these terms are cosines
with random phases.

2see Chapter 3
3aaaaagggh! beware of weak puns. (eds.)
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1.6 Quasimonochromatic and Complex Signals
For a strictly monochromatic signal, electrical engineers have known for a long time that
it is very convenient to use a complex voltage V (t) = E0 exp(i(ωt + ϕ)) whose real part
gives the actual signal Er(t) = E0 cos(ωt + ϕ). One need not think of the imaginary part
as a pure fiction since it can be obtained from the given signal by a phase shift of π/2,
viz. as Ei(t) = E0 cos(ωt + φ − π/2). In practice, since one invariably deals with signals
at an intermediate frequency derived by beating with a local oscillator, both the real and
imaginary parts are available by using two such oscillators π/2 out of phase. Squaring
and adding the real and imaginary parts give E2

r (t) + E2
i (t) = V (t)∗V (t) = E2

0 which is the
power averaged over a cycle. This is actually closer to what is practically measured than
the instantaneous power, which fluctuates at a frequency 2ω.

These ideas go through even when we have a range of frequencies present, by simply
imagining the complex voltages corresponding to each of the monochromatic components
to be added. In mathematical terms, this operation of deriving Ei(t) from Er(t) goes
by the name of the “Hilbert Transform”, and the time domain equivalent is described
in Section 1.8 But the physical interpretation is easiest when the different components
occupy a range ∆ω - the so called “bandwidth” - which is small compared to the “centre
frequency” ω0. Such a signal is called “quasimonochromatic”, and can be represented as
below

Eq(t) = Re exp(iω0t)
∑

−∆ω/2<ω1<∆ω/2

E(ω1) exp(iω1t+ iϕ(ω1))

In this expression, ω1 is a frequency offset from the chosen centre ω0, so that E(ω1)
actually represents the amplitude at a frequency ω0 + ω1, and ϕ(ω1) the phase. We can
now think of our quasimonochromatic signal as a rapidly varying phasor at the centre
frequency ω0, modulated by a complex voltage

Vm(t) =
∑

−∆ω/2<ω1<∆ω/2

E(ω1) exp(iω1t+ iϕω1)

This latter phasor varies much more slowly than exp(−iω0t). In fact, it takes a time
∆ω−1 for Vm(t) to vary significantly since the highest frequencies present are of order ∆ω.
This time scale is much longer than the timescale ω−1 associated with the centre fre-
quency. Writing Vm(t) in the polar form as R(t) exp(iα(t)), our original real signal reads

Eq(t) = R(t) cos(ω0t+ α(t))

.
We can think of R and α as time dependent, slowly varying, amplitude and phase

modulation of an otherwise (hence “quasi”) monochromatic signal.
While the mathematics did not assume smallness of ∆ω, the physical interpretation

does. If R(t) changes significantly during a cycle, some of its values may not be attained
as maxima and hence its square cannot be regarded as measuring average power. This
is as it should be. No amount of algebra can uniquely extract two real functions R(t) and
α(t) from a single real signal without further conditions (and the condition imposed is
explained in section 1.8).

But returning to the quasimonochromatic case, we can now think of Vm(t)∗Vm(t) as
the (slowly) time varying power in the signal. Likewise we can think of 〈V ∗

m(t)Vm(t+ τ)〉 as
the autocorrelation. (A little algebra checks that this is the same as the autocorrelation
of the original real signal). One advantage in working with the complex signal is that the
centre frequency cancels in any such product containing one voltage and one complex
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conjugate voltage. We can therefore think of such products as referring to properties
of the fluctuations of the signal amplitude and phase, and measure them even after
heterodyning has changed the centre frequency.

1.7 Cross Correlations
We have so far thought of the signal as a function of time, after it enters the antenna. Let
us now liberate ourselves from one dimension (time) and think of the electric field as ex-
isting in space and time, before it is collected by the antenna. In this view, one can obtain
a delayed version of the signal by moving along the longitudinal direction (direction of the
source). Thus, the frequency content is obtained by Fourier transforming a longitudinal
spatial correlation. As explained in Chapter 2, the spatial correlations transverse to the
direction of propagation carry information on the angular power spectrum of the signal,
i.e. the energy as a function of direction in the sky. With hindsight, this can be viewed
as a generalisation of the Wiener- Khinchin theorem to spatial correlations of a complex
electric field which is the sum of waves propagating in many different directions. Histori-
cally, it arose quite independently (and about at the same time!) in the context of optical
interference. This is the van Cittert-Zernike theorem of Chapter 2. Since one is now
multiplying and averaging signals coming from different antennas, this is called a “cross
correlation function”. To get a non-vanishing average, one needs to multiply E1(x, t) by
E∗

2 (y, t). The complex conjugate sign in one of the terms ensures that this kind of product
looks at the phase difference. Writing out each signal as a sum with random phases, the
terms which leave a non-zero average are the ones in which an eiϕn in an E cancels a
e−iϕn in an E∗. An (ill-starred?) product of two complex E’s with zero (or two!) complex
conjugate signs would average to zero.

1.8 Mathematical details
This section gives some more mathematical details of topics mentioned in the main text
of the chapter.

We first give the generalisation of the two variable gaussian to the joint distribution of
k variables. Defining the covariance matrix Cij = 〈xixj〉, and A = C−1, then we have

P (x1 . . . xk) = (2π)−k/2(det A)1/2 exp

(
−1

2
xTAx

)

The quadratic function Q in the exponent has been written in matrix notation with T
for transpose. In full, it is Q =

∑
ij xiaijxj. Notice that the only information we need for

the statistics of the amplitudes at k different times is the autocorrelation function C(τ),
evaluated at all time differences ti − tj. Formally this is stated as “the gaussian process
is defined by its second order statistics”.

What would be practically useful is an explicit formula for the average value of an arbi-
trary product xixjxl . . . in terms of the second order statistics 〈x1x2〉〈x3x7〉 . . . etc. The first
step is to see that a product of an odd number of x’s averages to zero. (The contributions
from x1 . . . xk & −x1 . . .− xk cancel).

For the case of an even number of gaussian variables to be multiplied and averaged,
there is a standard trick to evaluate an integral like

∫
P (x1 . . . xk)x3x7 . . . dx1 . . .. Define the

Fourier transform of P ,

G(k1 . . . kk) =

∫ ∫
P (x1 . . . xk)e

−ik1x1...ikkxkdx1 . . . dxk
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It is a standard result, derived by the usual device of completing the square, that this
Fourier transform is itself a gaussian function of the k’s, given by

G(k1, . . . , kk) = exp



−1

2

∑

ij

Cijkikj



 ≡ exp

(
−1

2
kTCk

)
.

Differentiating with respect to k1 and then k2, and putting all k’s equal to zero, pulls down
a factor −x1x2 into the integral and gives the desired average of x1x2. This trick now gives
the average of the product of a string of x’s in the form of the “pairing theorem”. This is
easier to state by an example.

〈x1x2x3x4〉 = 〈x1x2〉〈x3x4〉 + 〈x1x3〉〈x2x4〉 + 〈x1x4〉〈x2x3〉

≡ C12C34 + C13C24 + C14C23

A sincere attempt to differentiate G with respect to k1k2k3 and k4 and then put all k’s to
zero will show that the C ’s get pulled down in precisely this combination. Deeper thought
shows that the pairing rule works even when the x’s are not all identical, i.e.,

〈x4〉 = 〈x2〉〈x2〉 + 〈x2〉〈x2〉 + 〈x2〉〈x2〉 = 3〈x2〉2 = 3σ4

or even 〈x2n〉 = 1, 3, 5 . . . (2n− 1)σ2n.
The last property is easily checked from the single variable gaussian

(2πσ2)−1/2 exp(−x2/2σ2)

Since the pairing theorem allows one to calculate all averages, it could even be taken
to define a gaussian signal, and that is what we do in the main text.

We now sketch a proof of the sampling theorem. Start with a band limited (i.e con-
taining only frequencies less than B) signal sampled at the Nyquist rate, Er(n/2B). The
following expression gives a way of constructing a continuous signal Ec(t) from our
samples.

Ec(t) =
∑

n

Er(n/2B) sinc(2πB(t− n

2B
))

It is also known as Whitaker’s interpolation formula. Each sinc function is diabolically
chosen to give unity at one sample point and zero at all the others, so Ec(t) is guaranteed
to agree with our samples of Er(t). It is also band limited (Fourier transform of a flat
function extending from −B to +B). All that is left to check is that it has the same
Fourier coefficients as Er(t) (it does). And hence, we have reconstructed a band limited
function from its Nyquist samples, as promised.

We add a few comments on the notion of Hilbert transform mentioned in the context
of associating a complex signal with a real one. It looks rather innocent in the frequency
domain, just subtract π/2 from the phase of each cosine in the Fourier series of Er(t) and
reassemble to get Ei(t). In terms of complex Fourier coefficients, it is a multiplication
of the positive frequency component by −i and of the corresponding negative frequency
component by +i, Apart from the i, this is just multiplication by a step function of the
symmetric type, jumping from minus 1 to plus 1 at zero frequency. Hence, in the time
domain, it is a convolution of Er(t) by a kernel which is the Fourier transform of this
step function, viz 1/t (the value t=0 being excluded by the usual principal value rule).
Explicitly, we have
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Ei(t) =

∫
Er(s)P [1/(t− s)] ds/π

There is a similar formula relating Er to Ei which only differs by a minus sign. This
is sufficient to show that one needs values from the infinite past, and more disturbingly,
future, of t to compute Ei(t). This is beyond the reach of ordinary mortals, even those
equipped with the best filters and phase shifters. Practical schemes to derive the complex
signal in real time thus have to make approximations as a concession to causality.

As remarked in the main text, there are many complex signals whose real parts would
give our measured Er(t). The choice made above seemed natural because it was motivated
by the quasimonochromatic case. It also has the mathematical property of creating a
function which is very well behaved in the upper half plane of t regarded as a complex
variable, (should one ever want to go there). The reason is that V (t) is constructed to
have terms like eiωt with only positive values of ω. Hence the pedantic name of “analytic
signal” for this descendant of the humble phasor. It was the more general problem of
continuing something given on the real axis to be well behaved in the upper half plane
which attracted someone of Hilbert’s IQ to this transform.


