
  

Polarisation 4
● Images are made by Fourier transforming 

visbilities/correlations  as a function of projected baselines 
to obtain a map as a function of sky direction

● For full polarisation observations, the correlation between 
antennas  a   and b is a 2x2 complex matrix and its Fourier 
transform an image of the Stokes parameters in the sky

V ab=⟨ [Ea , xEa , y ] [Eb , x* Eb , y ]⟩=⟨ [Ea , x Eb , x* Ea , x Eb , y
*

Ea , y Eb , x
* Ea , y Eb , y

* ]⟩=[ I+Q U−iV
U+iV I−Q ]



  

Calibration and deconvolution
● In practice, the measured quantities differ from the ideal because of 

instrumental and propagation effects, and these can be  calibrated by 
observations of point sources, including polarised ones

● After applying calibration, the visibilities still do not cover the u-v plane, so 
the ‘point spread function’ has undesirable features – the map is ‘cleaned’ 

● Deconvolution is a euphemism for creating data where you have no 
measurements -  based on prejudice :-) 

● This  process applied alone,  gave  dynamic ranges of ~100 – early VLA 
specs, Ryle Nobel lecture quite pessimistic on future progress at shorter 
wavelengths



  

The self calibration revolution
● Necessity the mother of invention – MERLIN was phase unstable and VLBI 

phases are difficult to pin down

● Cornwell /  Wilkinson and Schwab invented self cal 1981

● Since deconvolution anyway ‘solves’ for missing  visibilities, why not let it 
‘solve’ for the unknown antenna based  gains as well, which are much fewer  
in number? 

● When selfcal is  good it is very very good, dynamic ranges went up by two 
orders of magnitude.

● But when data is sparse, it doesn't work so well 



  

Fast forward to the  EHT

Polarised images of M87  at 230 GHz   field is 120 
microarcseconds.  Extensive  efforts to  check for internal 
consistency and assess uncertainties,  Multiple and independent 
teams made  images by different methods



  

Counting  all closure quantities 
● Snapshot visibilities  have N(N-1) real parameters
● N complex gains have 2N-1 real parameters. The -1 

is for the overall phase which doesn't affect 
visibilities 

● We have N(N-1) +2N-1 unknowns but only  N(N-1) 
measurements

● We can eliminate gains and get a smaller number of 
identities between measured and true visibilities

● e.g.  x+y+z=1 ; x-3y+2z=3;  imply  - x-5y=1



  

Closure quantities, copolar case 
From the earliest days of radio astronomy, ways were found 
 to cancel antenna dependent complex gains, in the 
copolar/ scalar  case

Closure phase  (Jennison 1958) 

Closure amplitude   (Twiss, Carter,Little  1960) 
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Counting  closure phases 
● Triangles grow as N3 and 

quads as N4  while visibilities 
have  only N(N-1)  real 
parameters so clearly we 
need to find independent 
sets

● Basing triangles at one 
vertex does the job  we can 
produce bcd from abc,acd 
and adb  so     (N-1)(N-2)/2  
independent quantities 



  

Counting  closure amplitudes
● Eliminating the g’s will give  N2 -N -2N +1 = N2 -3N+1  

real combinations of true  visibilities  in terms of 
measured ones. 

● That leaves (N2 -3N+1 )-(N-1)(N-2)/2 =   N(N-3)/2 
closure amplitudes 

● A direct construction of independent closure 
amplitudes not given in TMS,  an elegant one  came  
from the EHT group  (Blackburn et al  2019)



  

● The space of measured visibilities has N(N-1) real dimensions and 
the true visibilities are a point in this space

● This point gets spread out into an ‘orbit’  when acted upon by 2N-1 
variable  gain parameters, so the measured visibilities lie on  2N-1 
dimensional surfaces – a ‘ foliation’

● The ‘co-dimension’ of each  surface is  N(N-1)-  (2N-1)= N2-3N+1  
meaning it takes that many co-ordinates to specify which surface 
we are on 

●  These co-ordinates are constant on each surface, so that is the 
number of invariants independent of gains

A more geometric view 



  

Imaging with closure quantities
● Early efforts in VLBI, comparing models to the closure 

quantities they predict  – so ‘forward modelling’
● When selfcal converges then no need for closure 

quantities – the solution fits the data to within the noise 
 with the  ‘solved’ gains applied and hence satisfies all 
closure quantities

● Closure  is useful    in situations where  selfcal itself is 
shaky 

● Straightforward imaging tools don't  quite work so 
alternatives like imaging purely with closure quantities 
explored  by the EHT group (Chael et. Al 2018)



  

Closure with  polarisation
(work with N.Thyagarajan, J.Samuel, Vinay Kumar )

● The true visibility is sandwiched between two 
gain matrices to give the measured visibility

● To cancel  the gains, one has to put on a hat

● Hat does not reverse the order of a product

 

V ab
M=⟨Ea

M Eb
M +⟩=Ga ⟨Ea

SEb
S+⟩Gb

+=GaV ab
S Gb

+

Define Â=(A+)−1 for any matrix A

When we form V ab V̂ bcV cd  the intermediate Gb and Gc  cancel



  

Products around loops

V ab
M V̂ bc

MV cd
M V̂ da

M=GaV ab V̂ bcV cd V̂ daGa
−1

¿

A matrix product around an even numbered loop with 
alternate hats picks up a  Ga on the left and Ga

-1   on the 
right

Determinants and traces of even numbered loops 
therefore cancel all matrix valued gains and are true 
‘invariants’ 
-Broderick and Pesce 2000

Not clear even after this work  that one had a complete set 
of invariants 



  

More numerology
● The total number of real quantities entering the 

visibilities is  8N(N-1)/2  =4 N (N-1) 
● The number of parameters in the gains is 8N-1
● We expect  4N2 -12N +1  real invariants but counting 

alone doesn't help to construct invariants
● There is a   numerical  strategy to count independent 

invariants, based on the geometric picture.  Perturb 
the visibilities and see how the given set of invariants 
varies. 



  

The task  is to  construct  the right 
number of invariants

● The breakthrough came from J.Samuel who used triangles

● The action of  Ga  M Ga
+    is related to Lorentz transformations 

plus scaling  of two four vectors constructed from M  

● The connection between Lorentz transformations and 
complex matrices with determinant 1  goes back to the early 
days of relativity

● However, the result we need  is easily verified 

V ab
M V̂ bc

MV ca
M=GaV ab V̂ bcV caGa

+



  

The Lorentz connection

M=[ t+z x−iy
x+iy t−z ] ; det (M )=¿ t2−z2−x2− y2

Any 2x2 complex matrix M can be written in the above form, with 
complex  t,x,y,z      Multiplying by other matrices with determinant 1
will preserve  det (M)  and will hence act like a Lorentz transformation 
on  t,x,y,z .  (Britton 2000)

 Further, if we have  G on the left and G+    on the right then this 
transformation is real – it doesn't mix real and imaginary parts of 
t,x,y,z      det (  GG+   )  acts like an overall scale factor   Therefore, 
every such matrix M   gives us two 4-vectors for free



  

The complete set of invariants
● Construct  all triangles starting at a given vertex
● Construct the matrices M for  all of these,   A=(N-1)(N-2)/2     in 

number 
● Use the first two triangles  to get four 4 vectors and their ten dot 

products 
● Use this basis to construct  8 more invariants  for each later 

triangle.
● We get 8A-7= 4N2 -12N+1      real invariant quantities 
● Scale is taken care of by normalising



  

More...
● This ‘triangles’ approach clarifies even the co-polar case – no 

Lorentz transformations needed, just scale. Closure amplitudes  
and closure phases are unified

● The invariants are highly non-linear combinations of Fourier 
coefficients.  No clear intepretation in the   image space.  So  
simulations needed, even  AI?

● Need to look  at noise properties – what if one of the hatted 
matrices is close to singular?

● Incomplete  graph,  Single polarisation antenna.  

● Real data



  

Topics for 11 Dec talk

● Representation of absorbing / lossy systems on the Poincare 
sphere.

● Connection with Lorentz transformations on the celestial sphere
● The formal analogy of polarised light with spin half systems
● Polarisation over the whole sky: Scalar feeds, Huygens 

sources.
● The three dimensional space of polarisation and phase  
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